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Bondi-van der Burg-Metzner-Sachs (BMS) symmetry

BMS, asymptotic symmetries of GR: found in the 60’s
in an asymptotic region of spacetime called null infin-
ity (radiation).

I = I + ∪ I −

Infinite-dimensional extension of the Poincaré algebra by a set of
angle-dependent translations: supertranslations (Abelian subgroup).

Connected to Weinberg’s soft graviton theorems through Ward identities,
leading to a deeper physical understanding of classical and quantum
properties of gravity [Strominger’s lectures: 1703.05448].
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BMS, matching conditions and spatial infinity

• Boundary conditions originally given in D = 4 did not exhibit the BMS
group but only Poincaré at i0 [Regge and Teitelboim ’74].

• BMS diffeos preserve b.c. at I (exact symmetries of GR). They should
appear independently of the description (including spacetime slicings
adapted to i0).

• Invariance of the gravitational S-matrix under BMS is based on the
assumption of antipodal matching conditions of the fields and charges
between I +

− and I −
+ (clearly involves i0).

• Connecting i0 with I +
− and I −

+ is a non-trivial and subtle question.
Evolution of reasonable Cauchy data makes null infinity not so smooth.
Metric and Weyl tensor develop logarithmic singularities [Friedrich,

Valiente-Kroon...].
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BMS at spatial infinity

BMS symmetry emerges at i0 through the reconsideration of the parity
conditions [Henneaux and Troessaert 2018].

→ Central ingredients are finiteness and off-shell invariance of the action:
boundary conditions that make the kinetic term finite (well-defined
symplectic structure).

→ Symmetries are canonical: we can associate to any symmetry a
charge-generator.

→ Strominger’s matching conditions:

Φ(θ, φ)
∣∣∣
I+

−

= Φ(θ − π, φ+ π)
∣∣∣
I−

+

which lead to an infinity of conservation laws (energy and angular
momentum at each angle on S2), are really a consequence of the boundary
(parity) conditions imposed at i0 for having a well-defined action principle.
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Logarithmic relaxation of the gravitational field

One could wonder whether it is possible to relax consistently the
asymptotic behaviour of the gravitational field by log terms (finite action,
finite/integrable canonical generators...):

gij = (gij)RT + Uij Uij = ∆log
ij +∆diff

ij

πij = (πij)RT + V ij V ij = Γij
log + Γij

diff

Asymptotically:

gij = δij +
ln r

r
∆

log
ij +

hij

r
+ o

(
r−1) πij =

ln r

r2
Γ
ij
log +

πij

r2
+ 0

(
r−2)

where
hij = (hij)

even +∆
odd
ij πij = (πij)odd + Γ

ij
even

∆
odd
ij = r (∂iVj + ∂jVi)

Γ
ij
even = r2

(
∂i∂jV − δij△V

) ∆
log
ij = r

(
∂iṼj + ∂j Ṽi

)
= even

Γ
ij
log = r2

(
∂i∂j Ṽ − δij△Ṽ

)
= odd
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Asymptotic conditions

The asymptotic behaviour of the gravitational field in spherical coordinates

grr = 1 +
1

r
hrr +

1

r2

(
ln2 r hlog(2)

rr + ln r hlog(1)
rr + h(2)

rr

)
+ o(r−2)

grA = λA +
1

r

(
ln2 r h

log(2)
rA + ln r h

log(1)
rA + h

(2)
rA

)
+ o(r−1)

gAB = r2gAB + r
(
ln r θAB + hAB

)
+ ln2 r θ

(2)
AB + ln r σAB + h

(2)
AB + o(1)

and

πrr = ln r πrr
log + πrr +

1

r

(
ln2 rπrr

log(2) + ln rπrr
log(1) + πrr

(2)

)
+ o(r−1)

πrA =
ln r

r
πrA
log +

1

r
πrA +

1

r2

(
ln2 rπrA

log(2) + ln rπrA
log(1) + πrA

(2)

)
+ o(r−2)

πAB =
ln r

r2
πAB
log +

1

r2
πAB +

1

r3

(
ln2 rπAB

log(2) + ln rπAB
log(1) + πAB

(2)

)
+ o(r−3)

All the log subleading terms are required by preservation under Poincaré
transformations (non-linearity of GR!). For details see [OF, Henneaux,

Troessaert JHEP 2211.10941].
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Logarithmic relaxation of the gravitational field

• This behaviour leads to divergences in the symplectic structure unless one
makes use of the suitable parity conditions on the leading coefficients of
(∆log

ij ,Γij
log) and a faster fall-off Hamiltonian constraints.

• The Lorentz boost problem (dV (ιξBoostΩ) ̸= 0) can be solved by applying
appropriate gauge transformations (of a logarithmic origin).

• Boundary conditions invariant (besides the BMS supertranslations Sβ)
under a new kind of logarithmic supertranslations Lα.

• These logarithmic supertranslations are canonically conjugate to the pure
supertranslations:

{Lα, Sβ} = δαβ
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Decoupling of the pure supertranslations from Poincaré

• The presence of these central charges allows to decouple all pure
supertranslations from the Poincaré algebra:

Lorentz ⋉ (supertranslations × log-supertranslations)

⇒ Poincaré × pure supertranslations × log-supertranslations

• We provide a definition for the angular momentum that is invariant under
supertranslations, solving the so-called angular momentum ambiguity in
General Relativity.

• Other proposals to solve this “problem” in an independent form at null
infinity by Yau et al [2102.03235, 2107.05316...], Porrati et al [1607.03120,

2202.03442... ] and Compère et al [1912.03164, 2303.17124...].

→ All these proposals are indeed equivalent! Nonetheless, analysis at i0 is
more complete concerning the nature of the redefinitions (Poisson brackets
of all canonical variables...) [OF, Henneaux, Troessaert PRL 2305.05436].
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The log-BMS algebra

{Ma,Mb} = fc
abMc

{Ma, Ti} = Rj
aiTj

{Ma, Sα} = Gβ
aαSβ +Gi

aαTi

{Ma, L
α} = −Gα

aβL
β

{Lα, Sβ} = δαβ

Lorentz generators: Ma (spatial rotations and Lorentz boosts)

Translations generators : Ti (rigid)

Supertranslations generators: Sα (BMS supertranslations)
Lβ (Log supertranslations)
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Decoupling of the pure supertranslations from Lorentz

The searched-for redefinition (“nonlinear automorphism” of the Lorentz
algebra) reads

M̃a = Ma −Gi
aβTiL

β −Gα
aβSαL

β

The asymptotic symmetry algebra then becomes

{M̃a, M̃b} = fc
abMc {M̃a, Ti} = Rj

aiTj

{M̃a, Sα} = {M̃a, L
α} = 0

{Lα, Sβ} = δαβ

This mechanism is implemented through suitable field-dependent
diffeomorphisms [OF, Henneaux, Troessaert JHEP 2211.10941].
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Decoupling of the pure supertranslations from Lorentz

The charges Lα match the null infinity potential C: electric part of the
Bondi shear or the Goldstone boson of spontaneously broken
supertranslation invariance [OF, Henneaux, Troessaert PRL 2305.05436].

We will extend this construction to

- The higher-dimensional generalization of the BMS algebra (BMS5).

- The supersymmetric extension of BMS (super-BMS).

Common feature: nonlinear algebras.
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Structure of BMS5 and super-BMS

BMS5

[Ma,Mb] = fc
abMc

[Ma, Ti] = R j
ai Tj

{Ma, Sα} = G i
aα Ti +G β

aα Sβ

+UaαβγL
βLγ

[Ma, L
α] = −G α

aβ Lβ

[Lα, Sβ ] = δαβ

Susy: QI (rigid)

Local susy: qA (inf-dim)

Ferm. symmetry: sB (inf-dim)

super-BMS

[Ma,Mb] = fc
abMc

[Ma, Ti] = Rj
aiTj

[Ma, Sα] = Gi
aαTi +Gβ

aαSβ

[Ma, QI ] = gJaIQJ

+V i
aIBs

BTi + V α
aIBs

BSα

[Ma, qA] = hB
aAqB

+U i
aABs

BTi + Uα
aABs

BSα

[Ma, s
B ] = −hB

aCs
C

{sA, qB} = δAB

{QI , qA} = diIATi + dαIASα

{qA, qB} = diABTi + dαABSα

{QI , QJ} = diIJTi
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Canonical generator of the asymptotic symmetries

• Asymptotic symmetries: preservation of boundary conditions and action
⇔ Canonical transformations (well-defined canonical generator).

• Canonical generator:

Gξ =

∫
ddxξαHα +Bξ Bξ =

∮
Sd−1
∞

dd−1yf

→ Bξ is necessary in order to satisfy ιXξΩ = −dV Gξ.

• Trivial asymptotic symmetries (proper) are those that decay fast enough
so that Bξ = 0 ⇒ Gξ ≈ 0. They form an ideal.

• Non-trivial or large asymptotic symmetries (improper) are diffeos that
do not vanish at infinity, i.e., Bξ ̸= 0 ⇒ Gξ ̸= 0. These can change the
physical state of the system.

[Benguria, Cordero and Teitelboim, Nucl. Phys. B 122 (1977), 61-99].
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Canonical generator of the asymptotic symmetries

• Physically equivalent generators G[ξα] and G[ξ′α] generate gauge
transformation that coincide at infinity (G’s differ by constraint terms).

• Asymptotic symmetries depend on the asymptotic values of the gauge
parameters at infinity:

ξα(r, y) −−−→
r→∞

◦
ξ α(r, yA, Us, T a, ∂AT

a, · · · ) + “more”

with

Us: constant parameters (Poincaré transformations)

T a: functions on Sd−1
∞ (supertranslations)

◦
ξ α could also depend on the asymptotic values of the fields.

Oscar Fuentealba



Introduction
Log-BMS algebra

Asymptotic symmetries and nonlinear redefinitions
Simplifying (super-)BMS algebras: direct sum structure

Conclusions

Canonical generator of the asymptotic symmetries

• The charge-generator then takes the form

G[ξα] =

∫
ddxξαHα + Us

∮
dd−1yQs +

∮
dd−1yT aGa

We assume that Us and T a do not depend on the fields (G has well-defined
functional derivatives).

• What if we make redefinitions involving the fields through the charges?...
but why?...

The asymptotic charges are

Qs =

∮
dd−1yQs Qa(y) = Ga(y)

and their Poisson brackets

{Qs, Qr} {Qs, Qa(y)} {Qa(y), Qb(y
′)}

are (in general nonlinear) functions of the charges.
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Canonical generator of the asymptotic symmetries

• Nonlinear algebras are indeed the rule rather than a fancy exception!
(many examples in the literature –higher spin gravity, conformal gravity,
extended supergravity in 3D, etc).

• The nonlinear functions of the charges that occur in the brackets and the
redefinitions are still of the form

G[ξα] =

∫
ddxξαHα + Us

∮
dd−1yQs +

∮
dd−1yT aGa

with appropriate gauge parameters and boundary terms, and not by
nonlocal expressions such as(∫

ddxξαHα +Bξ

)2
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Equations obeyed by the charges

• Let us consider the symplectic form

Ω =

∫
ddx dV πΓ ∧ dV ϕΓ

(ϕΓ, πΓ): canonically conjugate fields.

• The condition ιXMΩ = −dV M for

M =

∫
ddxM+

∮
dd−1ym

implies that (with no boundary term)

dV M =

∫
ddx

(
LΓdV ϕΓ +NΓdV πΓ

)
with

δM

δϕΓ(x)
= LΓ(x)

δM

δπΓ(x)
= NΓ(x)

Equivalent to the condition in [Regge, Teitelboim Annals. Phys. 1974]
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Equations obeyed by the charges

• Let us now take the variation of the canonical generator G[ξα]:

dV G[ξα] =

∫
ddx(dV ξα)Hα+

∫
ddxξαdV Hα+Us

∮
dd−1ydV Qs+

∮
dd−1yTadV Ga

• The bulk terms can be written as∫
ddxξαdV Hα =

∫
ddxAΓ

ξ dV πΓ −
∫

ddxdV ϕΓBξ,Γ +

∮
dd−1yV∫

ddx(dV ξα)Hα =

∫
ddxA′Γ

ξ dV πΓ −
∫

ddxdV ϕΓB′
ξ,Γ +

∮
dd−1yV ′

After integration by parts, the above surface integrals become∮
dd−1yV = Us

∮
dd−1yks +

∮
dd−1yTasa∮

dd−1yV ′ = Us

∮
dd−1yk′s +

∮
dd−1yTas′a
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Equations obeyed by the charges

• G[ξα] must have well-defined functional derivatives (dV G[ξα] must reduce
to a bulk term). Then

Us

∮
dd−1y(dV Qs + ks + k′

s) +

∮
dd−1yT a(dV Ga + sa + s′a) = 0

which holds by providing a suitable set of boundary conditions!

• Since the Uss and the T as are arbitrary, we get the equations to be
obeyed by the charge-generators:

dV Qs +

∮
dd−1y(ks + k′

s) = 0 dV Ga + sa + s′a = 0

• Given these conditions, what is the ξ
α
that must be included in

G[ξ
α
] =

∫
ddxξ

αHα + F [Qs, Qa(y)]

where F [Qs, Qa(y)] is some given functional of the charges?
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Nonlinear charges

The answer is a vector that behaves asymptotically as

ξ
α −−−→

r→∞

◦
ξ α(r, yA, U

s
, T

a
, ∂AT

a
, · · · )

where

U
s
=

∂F

∂Qs
T

a
(y) =

δF

δQa(y)

The proof can be found in section 2.3 of [OF, Henneaux JHEP 2309.07600].

• No difficulty in handling non-linear expressions, charges take the standard
form! (the asymptotic redefinition determines everything modulo physically
irrelevant proper gauge symmetries).

• Integrability is manifest. The corresponding transformations are derived
by taking the Poisson bracket.
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Nonlinear BMS5 algebra

Algebraic structure of BMS5:

[Ma,Mb] = fc
abMc

[Ma, Ti] = R j
ai Tj

{Ma, Sα} = G i
aα Ti +G β

aα Sβ + UaαβγL
βLγ

[Ma, L
α] = −G α

aβ Lβ

[Lα, Sβ ] = δαβ

Supertranslations generators: Sα (BMS supertranslations)
Lβ (subleading supertranslations)

→ The role of the log supertranslations is played by subleading
supertranslations!
→ Structure constants are constrained by Jacobi identities.

[OF, Henneaux, Matulich, Troessaert PRL 2111.09664]

[OF, Henneaux, Matulich, Troessaert JHEP 2206.04972]
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Nonlinear BMS5 algebra

The searched-for redefinition of the Lorentz generators:

M̃a = Ma −G i
aβL

βTi −G γ
aβ LβSγ − 1

3
UaβγδL

βLγLδ

The asymptotic symmetry algebra then takes the form

[M̃a, M̃b] = fc
abM̃c

[M̃a, Ti] = R j
ai Tj

[M̃a, Sα] = 0

[M̃a, L
α] = 0

[Lα, Sβ ] = δαβ

It explicitly exhibits the direct sum structure

Poincaré ⊕ Supertranslations

The exactly same structure found in the 4D case.
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Nonlinear log-BMS4 superalgebra

[Ma,Mb] = fc
abMc

[Ma, Ti] = Rj
aiTj

[Ma, Sα] = Gi
aαTi +Gβ

aαSβ

[Ma, L
α] = −Gα

aβL
β

[Lα, Sβ ] = δαβ

[Ma, QI ] = gJaIQJ + V i
aIBsBTi + V α

aIBsBSα

[Ma, qA] = hB
aAqB + U i

aABsBTi + Uα
aABsBSα

[Ma, s
B ] = −hB

aCsC

{sA, qB} = δAB

{QI , qA} = diIATi + dαIASα

{qA, qB} = diABTi + dαABSα

{QI , QJ} = diIJTi

Jacobi identities (Lα, qA, qB) and (Lα, qA, QI):

[Lα, qA] = nα
ABs

B , [Lα, QI ] = dαIBs
B , dαAB = nα

AB + nα
BA
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Nonlinear log-BMS4 superalgebra

The algebraic decoupling is achieved by implementing the redefinitions:

Q̃I = QI − diIBs
BTi − dαIBs

BSα

q̃A = qA − 1

2
diABs

BTi −
1

2
dαABs

BSα

M̃a = Ma −Gi
aβL

βTi −Gγ
aβL

βSγ + hB
aAs

AqB

+
1

2

(
U i

aAB − hC
aAd

i
BC − nβ

ABG
i
aβ

)
sAsBTi − hC

aAn
α
CBs

AsBSα

L̃α = Lα +
1

2
nα
[AB]s

AsB
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Nonlinear log-BMS4 superalgebra

The algebra then takes the direct sum structure

super-Poincaré ⊕ Heisenberg superalgebra

• Super-Poincaré:

[M̃a, M̃b] = fc
abM̃c

[M̃a, Ti] = Rj
aiTj

[M̃a, Q̃I ] = gJaIQ̃J

{Q̃I , Q̃J} = diIJTi

• Infinite-dimensional Heisenberg superalgebra:

[L̃α, Sβ ] = δαβ

{sA, q̃B} = δAB

No square roots of supertranslations!
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Final remarks

• The method that simplifies the BMS algebra in 4D, can be extended to 5D
and supersymmetric extensions, whose common feature is the nonlinearity.

• These simplifications were achieved by appropriate nonlinear redefinitions
of the generators.

• Nonlinear redefinitions are implemented through the action of
field-dependent gauge transformations, which always take to the canonical
generators to the form ∫

ddxξαHα +Bξ

• Key: BMS supertranslations and BMS supersymmetries possess
canonically conjugate charges.

• (super-)Poincaré generators free from supertranslations and
angle-dependent supergauge ambiguities.
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