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We investigate an alternative approach, to the MIS relativistic approach, developed to describe fluids without an underlying boost symmetry. This density
frame approach has no non-hydrodynamic modes and no additional parameters compared to the Landau theory of first order hydrodynamics, at the price of not
being fully boost invariant. We show that the density frame equations of motion follow Landau ones if the ideal equations are used to rewrite lab-frame time
derivatives appearing in the dissipative strains as spatial derivatives. With this rewrite the equations are first order in time and are stable. In addition, we also
show that the density frame equations can be derived from the relativistic kinetic theory.

1 Density frame equations from Landau frame using lowest order equation of motion
In 1st order Landau frame hydrodynamics, the conserved current is ∂µJ

µ = 0 with Jµ ≡ nLFu
µ + jµD,LF where the first term in Jµ is ideal advection and

the second term is the diffusive correction jµD,LF ≡ −Tσ∆µν∂νµ̂LF with µ̂LF ≡ µ/T being the scaled chemical potential, thermodynamically conjugate to charge
density nLF. We derive the density frame equations of motion by first considering fluids without a boost symmetry, and then specializing the equations to Lorentz
covariant fluids. The advection-diffusion equation in the density frame consists of the conservation law

∂tN + ∂iJ
i = 0 , where J i ≡ Nvi + J i

D with diffusive current J i
D . (1)

J i
D is expanded in spatial gradients of the conserved charge, or its thermodynamic conjugate µ̂. The most general form of J i

D at first order in gradients of µ̂ is

J i
D = −

σ∥(β
0, v)

β0
v̂iv̂j∂jµ̂− σ⊥(β

0, v)

β0

(
δij − v̂iv̂j

)
∂jµ̂ . (2)

Comparing Landau frame and density frame forms give

N = nLFu
0 + j0

D,LF
, and J i

D = J i −Nvi = (∆i
α − vi∆0

α)j
α
D,LF

. (3)

We use lowest order equation of motion: ∂tµ̂ ≃ −vj∂jµ̂ to approximate the Landau frame expression for the diffusive current

jα
D,LF

≃ −Tσ
(
∆αj −∆α0vj

)
∂jµ̂ . (4)

Substituting eq. (4) into eq. (3) gives: J i
D = −T σij ∂jµ̂ where: Tσij = Tσ

(
∆i

α − vi∆0
α

) (
∆j

β − vj∆0
β

)
∆αβ = Tσ

(
δij − vivj

)
. Comparison with the

general form in eq. (2) shows that
σ∥(β

0, v)

β0
=

Tσ(β)

γ2
,

σ⊥(β
0, v)

β0
= Tσ(β) . (5)

Hence, the density frame equation of motion is ∂tN + ∂i(Nvi) = ∂i
(
Tσij∂jµ̂

)
and when µ̂ is written in terms of the charge N = χµu0, we arrive at advection-

diffusion equation:
∂tN + ∂i(Nvi) = ∂i

(
Dij∂jN

)
, (6)

with Dij = D
γ

(
δij − vivj

)
. D = Tσ/χ is the scalar diffusion coefficient of the Landau frame. The γ factors in the diffusion matrix can be easily understood

physically. The diffusion coefficient has units of distance squared per time. The rate of transverse diffusion is suppressed relative to a fluid at rest by one factor
of γ due to time dilation. The rate of longitudinal diffusion is suppressed by three factors of γ due to time dilation and length contraction, i.e. each spatial step
in the random walk is length contracted by γ and the steps add in square.

2 Density frame equations from relativistic kinetic theory
Let’s assume relaxation time approximation and consider single species of classical relativistic particles, which carry the charge of the system pµ∂µf =

−Cp δf where Cp is a momentum dependent parameter controlling the collision rate in the rest frame of the medium. In global equilibrium the phase space
distribution function is characterized by constant µ, T , uµ. If the density of the charged particles depends slowly on space and time then µ̂(t,x) is no longer a
constant but reflects this dependence: f0(t,x,p) = eµ̂(t,x)eβ

µpµ. In the density frame µ̂(t,x) is adjusted to reproduce the charge density in the lab frame J0, while
in the Landau frame µ̂(t,x) is adjusted to reproduce the charge in the rest frame, n(t,x) = −uµJ

µ. These two definitions agree when gradients are neglected,
and in this case feq(t,x,p) is a solution to the Boltzmann equation. µ̂(t,x) obeys the equations of ideal advection equation at lowest order

uµ∂µµ̂ ≃ 0 . (7)

We parameterize f = f0 + δf (t,x,p) and solve for δf order by order in the gradients

f0 p
µ∂µµ̂ = −Cp δf . (8)

In the Landau frame one decomposes the gradient into its temporal and spatial components as

∂µµ̂ = −uµu
α∂αµ̂ +∆ α

µ ∂αµ̂ . (9)

Neglecting the temporal term in Eq. (9) by exploiting the lowest order eom, Eq. (7), we substitute into Eq. (8), which leads to first viscous correction in the
Landau frame δfLF = −C−1

p f0 p
α∇αµ̂LF where ∇α = ∆ µ

α ∂µ. Evaluating the diffusive current

jµ
D,LF

=

∫
p

d3p

(2π)3
pµ

p0
δfLF , yields expected Landau frame current jµ

D,LF
= −Tσ∆µν∂νµ̂LF . (10)

The conductivity is defined as Tσ∆µν ≡ ∆µ
α∆

ν
βI

αβ where Iαβ ≡
∫

d3p
(2π)3p0 C

−1
p f0 p

αpβ.
In the density frame one uses the lowest order equations in the lab frame ∂tµ̂ = −vi∂iµ̂ which yields δf = −C−1

p f0(p
i− p0vi) ∂iµ̂. J i

D in the density frame
is the difference between the current and the ideal advection J0vi, J i

D =
∫

d3p
(2π)3p0

(
pi − p0vi

)
f . Substituting the approximate distribution function f0 + δf leads

J i
D = Kij(−∂jµ̂) , where Kij ≡

∫
d3p

(2π)3p0
C−1
p f0 (p

i − p0vi)(pj − p0vj) . (11)

Noting that pi − p0vi =
(
∆i

α − vi∆0
α

)
∆α

β p
β, we find that Kij has the expected density frame form

Kij =
(
∆i

α − vi∆0
α

) (
∆j

β − vj∆0
β

)
Tσ∆αβ = Tσ

(
δij − vivj

)
. (12)
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