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Relevant to early stages of heavy ion collisions, and presumably,
extreme astrophysical environments (the Early Universe?)

Uniformly accelerating fluid possesses an event horizon, similar to black holes.
— Intriguing questions related to the Unruh temperature and the Hawking radiation.

— Rapid thermalization of gluon matter due to high

Effects of high temperatures, high densities, strong (electro)magnetic fields, vorticity on quark-gluon plasma have been
intensively studied. Here we ask the question: what is the effect of acceleration on the phase diagram of QCD?

Initial state: Color Glass Condensate
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MADAI
collaboration,
Hannah
Petersen,
Jonah
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GP 2 PG
& hadronization

deceleration, a ~ 1 GeV, and tunneling through the Rindler horizon.

[D. Kharzeeyv, K. Tuchin, From Color Glass Condensate to Quark Gluon Plasma through the event horizon, Nucl. Phys. A753, 316 (2005)]
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Gluon matter under weak acceleration: lattice results
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CGOOd news firstD No sign problem! A

acceleration
in Minkowski
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fort - —i7,one gets: — > — —
12 72

acceleration in imaginary
time formalism in Euclidean

CZEZ—CZ

hint: [acceleration] = meters per second’

Can be calculated in first-principle Monte

Carlo simulations on the lattice! - —
k ( just a sign fllpv

A uniform acceleration of a fluid

First-principle lattice results

order parameter of
confinement of color

Polyakov loop (unrenormalized)

Change in free energy of a heavy quark
under acceleration (renormalized free energy)

hot cold 0.2
Under a uniform acceleration a, a generic particle system resides 0,051 T, — — s—mowa || ; g Observation 2: enery of a heavy |
in global thermal equilibrium characterized by temperature 7'(x), ' = _ Tl [ 0,01t taass T Quark smaller at the confinement side
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H — M ' ' i ' H acceleration, a ¢ e 1 T_ i (point-wise) -
pH(x) = u’(x)/T(x) associated with the local fluid velocity u*(x). N Iy Teomzeigsn % Lo=:ReTr [] Us- | —0.4] Conclusioni: 5 ¢ a=2681MeV |
— satisfies the Killing equation: 0 + 0”# = 0. ¥ a=1242MeV To=1.01 T, 3 =0 Acceleration drives 8 ¥ a=1242Mev |
1 ¥ a=808Mev To=1.0T, “ flecom;l_ned platsma 2 X a=8.08 MeV
, , ] 5 =1 | I | to confinemen Q _
— an acceleration solution: f*(x)d, = —I[(1 + az)d, + atd_]. 0.01] | 2=5%9Me&v To=10T. | . - —0.6 S | a=599Mev
Ty 3T 2T 0 i ) 3 ) —3 2 -1 0 1 2 3
1 at deconfinement 2, fm confinement deconfinement z, fm confinement
A shorthand notation, equivalent to 5’ = ?(1 +az)and f* = - < I I
0 0
~ physical quantites: e Phase diagram of gluon plasma under acceleration
T glo] cold | T ( ) density plot of the Polyakov loop 0.98
A - _ [ 1.101 Tc(a 3 7 a=5.99Mev| M,
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" T°(x) , N ;;; ". * Conclusion3: | ; golecccsses }__1 _______________________________
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We assoc?late this particular tem!oerature gradient with Y1 (2) = <\Lm!2> _ (\Laz!)i o A m : 0.95-_ the poation of the ranaition width of the transition/
acceleration “a” of hot matter with central temperature 7, . 0] ©Y Y i i | (atweak accelerations)
Att =0: / 3 2 1 0 i 2 3 3 0 5 10 15 20 75
z, fm a, MeV
T s 1 Summary
T(X) = 0 [inhomogeneous 1>7 =—
1 +az | temperaturel Rindler horizon = 1. Acceleration does not affect the critical temperature of the deconfinement

ut(x) = o' llocally static fluid]
HyZ

/4( )_ ao Tolman-Ehrenfest

a \x) = 1+61Z (Luttinger) relation

[for example: C. Cercignani and G. M. Kremer, The Relativistic Boltzmann Equation: Theory and

=event horizon]
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transition (at least, for the weak accelerations studied, a ~ (6...27) MeV)
— at least, for quarks, we expect the chiral symmetry restoration due to acceleration!

2. Even the weakest studied acceleration, a ~

6 MeV, makes a crossover out

of the original 1st order thermal phase transition in SU(3) Yang-Mills theory

Applications (Springer, 2002)]

— acceleration hinders the search for a real thermodynamic phase transition!

[Chiral symmetry restoration in the NJL model due to
acceleration: T. Ohsaku, Phys. Lett. B599 (2004) 102]

Details of lattice calculations

to keep finite volume effects to simulate acceleration at global hot cold
under full control thermodynamic equilibrium T, A
az :
In order to simulate the lattice gauge theory at fixed spatial volume geometry, L, = Ly = L. = const, and varying temperature, T = T(z), GE’ V////“ a,;
we need to work with an anisotropic lattice that has two different lattice spacings in the spatial (a,) and imaginary-time (a,) directions. E, 1y, ///////’“ a
= P S ey 1
(I_h Wl t th \ t \ | ) F. Karsch, . . . 1 \ CED a:’i '(/ J ar,L
e IHsSoOn acton wi anisotropic coupliings. ELJ(()T)gﬁ;sg.eBtgggfyzggu(%%%?on asymmetric lattices, plaquetteS: PP — §Re TI. UP g arx Y 0
3 3 h o < —rl—rl—rl—Ppl—Ple—P I —> ! |
— — a a a a a a a
5 = j 4 j o 60(333) (1 — Pw,ij) =+ E E 57'(553) (1 — Px,4z’) Pn"uy B {n,,uy} ©=23 coor oo n >
x i>j=1 x i=1 Up o = UpuUsoii VUT U real space (all three dimensions)
spatial plaquettes temporal plaquettes  , — ., s H R o r ~
\_ Lattice size: N, X N, X Ny X N, (natural numbers)
: . . . ) ) Simulationat: N. =6, 8; N =N, =42
The anisotropy of The physical lattice spacings are Physical temperature: For acceleration: Temperature T, at the t . Y
the lattice spacings: functions of the lattice couplings. ) 1 T, central z = 0 plane: N, =170, 148, 126, 104
__ L — T,=T(z=0 _ _
L a/O' CLG — ao- (/80'7 /87-) ’T(z) 1 ag< 0 (i ) PhySICal size: LT X Lx X Ly X LZ (physical length)

S — The length of The spacing of —

a”T aQr — ar (/80', 57-) the imaginary time: the imaginary time: N.a Imaginary-time length: L_(z) = N,a(z)
L L-(z) = N;a,(2) y kaT (2) = ap(1 — G«EZ)) a4 =a=0) y (space-dependent)
o _ _ T A Real-space length: L, = N_a,

Fixing lattice scales: | | (constant)
11— Inhomogeneous lattice spacing . _J
: Ao/ \§ Fixed lattice spacing at the center z = 0
S1.05 | as/a) \de‘&\\* : - Pacing ¢ CA de-confusion corner: ) )
3 - y=£ LA Euclidean acceleration, ag = —a < 0
CET S s F T o a,, a., d, . lattice spacings (very standard notation)
5 ‘ the ideal line
o I T . . . . .
> ' BF a Choosing a curve in the plane of the lattice couplings (f_, 3,) a : acceleration in Minkowski spacetime
50.95 T . . . . . (also, confusingly, very standard notation)

: g F T=0 such that £ changes while the spatial lattice spacing a, stays constant.
09 = o L T (given by a complicated nonlinear behavior even in perturbation theory: not shown) ag = — a : acceleration in the Euclidean spacetime
0.9 0.95 1 1.05 1.1 The mismatch of the scale fixing is less than 1% (= very accurate ) (after Wick rotation to imaginary time)

an intrinsic theoretical parameter é'
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