

PNRR: Fonduri pentru România modernă și reformată!

Gluon matter under weak acceleration: lattice results

Maxim Chernodub

imișoreana

a = 26.81 MeV

a = 12.42 MeV

a = 8.08 MeV

a = 5.99 MeV

2

confinement

Institut Denis Poisson, CNRS, Tours, France

FORQ group Department of Physics, West University of Timişoara, Romania

in collaboration with

Vladimir Goy, Alexander Molochkov, Daniil Stepanov, and Arina Pochinok **FIZICĂ**

Pacific Quantum Center, Far Eastern Federal University, 690922 Vladivostok, Russia

Can be calculated in first-principle Monte Carlo simulations on the lattice! just a sign fli

Change in free energy of a heavy quark under acceleration (renormalized free energy)

Ó

z, fm

Conclusion 1:

to confinement

-3

Acceleration drives

deconfined plasma

-2

deconfinement

-1

Motivation Effects of high temperatures, high densities, strong (electro)magnetic fields, vorticity on quark-gluon plasma have been intensively studied. Here we ask the question: what is the effect of acceleration on the phase diagram of QCD?

Relevant to early stages of heavy ion collisions, and presumably, extreme astrophysical environments (the Early Universe?)

- Uniformly accelerating fluid possesses an event horizon, similar to black holes.
- \rightarrow Intriguing questions related to the Unruh temperature and the Hawking radiation.
- \rightarrow Rapid thermalization of gluon matter due to high deceleration, $a \sim 1 \text{ GeV}$, and tunneling through the Rindler horizon. [D. Kharzeev, K. Tuchin, From Color Glass Condensate to Quark Gluon Plasma through the event horizon, Nucl. Phys. A753, 316 (2005)

Theory

 $a^{\mu}(x) = \frac{a\delta^{\mu,z}}{}$

Details of lattice calculations

A uniform acceleration of a fluid

Under a uniform acceleration a, a generic particle system resides in global thermal equilibrium characterized by temperature T(x), which is an inhomogeneous function of spacetime coordinate x.

First-principle lattice results

acceleration, *a* temperature

a = 5.99 MeV

-2

deconfinement

0.02

0.01

26.81 MeV $T_0 = 0.99 T_c$

 $T_0 = 1.0 T_c$

-1

 $a = 12.42 \text{ MeV} | T_0 = 1.01 T_c$

a = 8.08 MeV $T_0 = 1.0 T_c$

0

z, fm

 $L_{\boldsymbol{x}} = \frac{1}{2} \operatorname{Re} \operatorname{Tr} \prod^{n} U_{\boldsymbol{x},\tau}$

3

2

confinement

Tolman-Ehrenfest (Luttinger) relation

adapted

MADAI collaboration

lannah

etersen Jonah

-0.4

-0.6

In order to simulate the lattice gauge theory at fixed spatial volume geometry,
$$L_x = L_y = L_z = \text{const}$$
, and varying temperature, $I = I$ (we need to work with an anisotropic lattice that has two different lattice spacings in the spatial (a_{σ}) and imaginary-time (a_{τ}) directions.

 $1 \partial T$

 $a = -\frac{1}{T}\frac{1}{\partial z}$

