

PNRR: Fonduri pentru România modernă și reformată!

Helical effects in fermionic plasma

Victor E. Ambruș¹, Maxim N. Chernodub^{2,1}

EPJC 83 (2023) 111; 84 (2024) 289; 84 (2024) 282.

¹ West University of Timişoara, Romania
² Institut Denis Poisson, Tours, France

 $8^{\rm th}\chi{\rm rality}\mid 22^{\rm nd}$ July 2024

"PNRR. Finanțat de Uniunea Europeană – UrmătoareaGenerațieUE"

Helicity current:

- Fermion polarization can be described using helicity $\lambda = \pm 1/2$.
- The helicity operator *h* commutes with the Hamiltonian.
- The helicity current $J^{\mu}_{H} = \bar{\psi}\gamma^{\mu}h\psi + h.c.$ is conserved for free fermions.

Helical vortical effect:

- Due to spin-orbit coupling leads to polarization under external Ω .
- Well-known effect: Chiral vortical effect, involving $J_A^{\mu} \propto T^2, \mu_V^2$.
- New helical vortical effect: $J_H^{\mu} \propto \mu_V T$.

Helical separation effect:

- In external **B**, the transverse-plane dynamics is quantized \Rightarrow Landau levels.
- For $|qB| \gg T$, the transverse dynamics is suppressed \Rightarrow **LLL** dominates.
- LLL selects only one polarization ⇒ anomalous transport.
- CME and CSE are well-known and involve J_A^{μ} and μ_A .
- **New conserved helicity operator** h in external **B**.
- $\langle J_H^{\mu} \rangle$ reveals leading-order Helical Separation Effect (HSE).

The V/A/H currents

- Dirac fermions are described by $\mathcal{L} = \frac{i}{2} \overline{\psi} \overleftrightarrow{\partial} \psi m \overline{\psi} \psi$.
- $J_V^{\mu} = \bar{\psi} \gamma^{\mu} \psi$ is conserved thanks to the $U(1)_V$ symmetry of \mathcal{L} .
- The conservation of $J^{\mu}_{A} = \bar{\psi}\gamma^{\mu}\gamma^{5}\psi$ is broken by $m \neq 0$ and axial anomaly:

$$\partial_{\mu}J^{\mu}_{A} = 2im\bar{\psi}\gamma^{5}\psi + \frac{e^{2}}{2\pi^{2}}\mathbf{E}\cdot\mathbf{B}.$$
(1)

A third conserved current is the helicity current:

$$J_{H}^{\mu} = \bar{\psi}\gamma^{\mu}h\psi + \overline{h\psi}\gamma^{\mu}\psi, \quad h = \frac{1}{p}\mathbf{S}\cdot\mathbf{P},$$
(2)

where ${f S}$ is the spin matrix, satisfying

$$\partial_{\mu}J_{H}^{\mu} = 0 +$$
quantum terms? (3)

In the non-interacting classical theory, J^{μ}_{H} is conserved even for $m \neq 0!$

Quantum theory with V/A/H charges

	Q_V	Q_A	Q_H	\mathbf{J}_V	\mathbf{J}_A	\mathbf{J}_{H}
C	_	+	—	_	+	
P	+	_	—	_	+	+
T	+	+	+	_	_	—

Caption. Behaviour of the V/A/H charges (Q) and currents (\mathbf{J}) under the *C*-, *P*-, and *T*-inversions.

For free massless fermions, the V/A/H/ charges are conserved:

$$Q_V = \int d^3x \,\psi^{\dagger}\psi, \quad Q_A = \int d^3x \,\psi^{\dagger}\gamma^5\psi, \quad Q_H = 2\int d^3x \,\psi^{\dagger}h\psi.$$

 \blacktriangleright In the quantum theory, $\hat{\psi} = \sum_j [U_j \hat{b}_j + V_j \hat{d}_j^{\dagger}]$ and

$$: \widehat{Q}_{\ell} := \sum_{j} [q_{+,\lambda}^{\ell} \widehat{b}_{j}^{\dagger} \widehat{b}_{j} + q_{-,\lambda}^{\ell} \widehat{d}_{j}^{\dagger} \widehat{d}_{j}],$$

$$(4)$$

with $(q_{\sigma,\lambda}^V, q_{\sigma,\lambda}^A, q_{\sigma,\lambda}^H) = (\sigma, 2\lambda, 2\lambda\sigma).$

Vortical effects in V/A/H plasmas

- The plasma develops $J_{\ell}^{\mu} = Q_{\ell}u^{\mu} + \sigma_{\ell}^{\tau}\tau^{\mu} + \sigma_{\ell}^{\omega}\omega^{\mu}$, where
- Axial vortical effect: $\sigma_A^{\omega} = \frac{T^2}{6} + \frac{\mu_V^2 + \mu_A^2 + \mu_H^2}{2\pi^2}$.
- Helical vortical effects: $\sigma_V^{\omega} = \frac{2\mu_H T}{\pi^2} \ln 2$, $\sigma_H^{\omega} = \frac{2\mu_V T}{\pi^2} \ln 2$.

• σ_A^{ω} and σ_H^{ω} are non-vanishing even when $\mu_A = \mu_H = 0!$

Helicity in a constant magnetic field

• Under minimal coupling, $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + iqA_{\mu}$ and

$$\mathcal{L} = \frac{i}{2} \bar{\psi} \overleftrightarrow{\partial} \psi - q \bar{\psi} A \psi - m \bar{\psi} \psi \quad \Rightarrow \quad (i \partial - q A - m) \psi = 0.$$
 (5)

Ve take A^{μ} in the Coulomb gauge, $A^{\mu} = (0, \mathbf{A})$, with $\mathbf{A} \equiv \mathbf{A}(\mathbf{x})$, such that $\mathbf{E} = \partial_t \mathbf{A} - \nabla A^0 = 0$, $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$, $F_{\mu\nu} = -B(g_{\mu x}g_{\nu y} - g_{\mu y}g_{\nu x})$. (6)

▶ In this case, the Dirac Hamiltonian satisfying $H\psi = i\partial_t\psi$ reads

$$H = m\gamma_0 + \gamma^0 \boldsymbol{\gamma} \cdot \boldsymbol{\pi}, \qquad \boldsymbol{\pi} = -i\boldsymbol{\nabla} - q\mathbf{A}.$$
(7)

We seek for h such that [h, H] = 0. Writing $H = m\gamma_0 + 2\gamma^5 \mathbf{S} \cdot \boldsymbol{\pi}$, we see that

$$h = \frac{\mathbf{S} \cdot \boldsymbol{\pi}}{\sqrt{H^2 - m^2}}.$$
(8)

• The divergence of J_H^{μ} reads $\partial_{\mu}J_H^{\mu} = \bar{\psi}\partial h\psi + \overline{\partial}\psi h\psi + h.c.$ • Because [H,h] = 0, if $H\psi = i\partial_t\psi$ then $Hh\psi = i\partial_t(h\psi)$, such that

$$\partial h\psi = -i(qA + m)h\psi \quad \Rightarrow \quad \bar{\psi}\partial h\psi = -\overline{\partial}\psi h\psi \quad \Rightarrow \quad \partial_{\mu}J^{\mu}_{H} = 0.$$
 (9)

 \blacktriangleright J_H^{μ} is conserved in a background magnetic field, even at finite m!

Landau levels & Helical separation effect

 \blacktriangleright Transverse dynamics is quantized into Landau levels n_j ,

$$E_j^2 = m^2 + (p_j^z)^2 + 2n_j |qB|.$$
 (10)

The lowest Landau level (LLL), n_j = 0, exists only when 2σλ_j = sgn(p^z_j).
 The t.e.v.s of the charge currents can be put in the form

$$J^{\mu}_{\ell} = Q_{\ell}u^{\mu} + \sigma^{B}_{\ell}B^{\mu}, \quad u^{\mu} = \delta^{\mu}_{0}, \quad B^{\mu} = \frac{1}{2}\varepsilon^{\mu\nu\alpha\beta}u_{\nu}F_{\alpha\beta} = B\delta^{\mu}_{z}, \quad (11)$$

 $\triangleright Q_{\ell}u^{\mu}$ is the classical transport of the charge density Q_{ℓ} .

• The anomalous transport component $\sigma_{\ell}^{B}B^{\mu}$ is given only by the LLL:

• σ_A^B and σ_H^B are non-vanishing even when $\mu_A = \mu_H = 0!$