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Abstract
A quantum fluid in thermal equilibrium can be described in the grand canonical ensemble using the density operator ρ̂. At finite temperature and chemical potential, the expectation

values of the energy-momentum tensor and the charge current reveal the well-known thermodynamics of the Fermi-Dirac fluid. When the system is rotating or immersed in a magnetic
field, deviations from the Fermi-Dirac thermodynamics can be seen, a particular form of which gives rise to anomalous transport. Anomalous transport was originally uncovered at the level
of the axial current: a rotating fluid exhibits a flow of chirality along the rotation vector (the chiral vortical effect). Similarly, Dirac fermions in a magnetic field exhibit the chiral separation
effect, by which vector charge imbalance drives a flow of chirality. Conversely, chiral imbalance drives a flow of vector charge (the chiral magnetic effect). In this poster, we address similar
effects at the level of the helicity current, describing the flow of helicity (as opposed to chirality) at finite rotation and in the presence of a magnetic field. Because the helicity has opposite
charge conjugation parity compared to chirality, these transport laws complement each other. At high temperature and under rotation, the axial conductivity is dominant; while under a
magnetic field, the helical conductivity becomes dominant. [Based on Refs. [1, 2]]

1 The V/A/H currents

�Free Dirac fermions are described by L = i
2ψ̄
←→
/∂ ψ −mψ̄ψ and satisfy (i/∂ −m)ψ = 0.

� Invariance under U(1)V transf. ψ → eiαVψ ⇒ conserved vector current JµV = ψ̄γµψ.

�For m = 0, L is invariant under the U(1)A symmetry, ψ → eiαAγ
5

ψ. The conservation of
the associated axial current JµA = ψ̄γµγ5ψ is broken by m ̸= 0 and by quantum effects:

∂µJ
µ
A = 2imψ̄γ5ψ +

e2

2π2
E ·B.

�A third conserved quantity is the helicity current JµH = ψ̄γµhψ+ hψγµψ [3, 1], where
h = 1

pS ·P and S is the spin matrix, satisfying

∂µJ
µ
H = 0 + quantum terms?

In the non-interacting classical theory, JµH is conserved even for m ̸= 0!

2 Quantum theory with V/A/H charges

QV QA QH JV JA JH
C − + − − + −
P + − − − + +

T + + + − − −

Caption. Behaviour of the vector (V ), axial (A), and helical (H) charges

(Q) and currents (J) of a massless Dirac fermion under the C-, P -, and T -

inversions. The signs +/− indicate the even/odd nature of these quantities

under the corresponding discrete transformations.

�The system of free, massless fermions supports the V/A/H/ conserved charges:

QV =

∫
d3xψ†ψ, QA =

∫
d3xψ†γ5ψ, QH = 2

∫
d3xψ†hψ.

�Taking ψ̂ =
∑

j[Ujb̂j + Vjd̂
†
j] with Uj and Vj = iγ2U ∗j as eigenfunctions of {H, h},

HUj = EjUj, hUj = λjUj, HVj = −EjVj, hVj = λjVj,

we have : Q̂ℓ :=
∑

j[q
ℓ
+,λb̂

†
jb̂j + qℓ−,λd̂

†
jd̂j], with charges

qVσ,λ = σ, qAσ,λ = 2λ, qHσ,λ = 2λσ.

3 Vortical effects in V/A/H plasmas

Finite temperature QFT under rigid rotation given by ρ̂ = exp[−β(Ĥ − ΩĴz) +α ·Q].
[α = µ/T is the normalized chemical potential]

Velocity :

uα∂α =Γ(∂t + Ω∂φ),

Acceleration :

aα∂α =(∇uu)
α∂α = −ρΩ2Γ2∂ρ,

Vorticity :

ωα∂α =
1
2ε
αβγσuβ(∂γuσ)∂α

=Γ2Ω∂z,

Fourth vector :

τα∂α =− εαβγσωβaγuσ∂α
=− Ω3Γ5(ρ2Ω∂t + ∂φ).
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The rotating fermionic plasma develops currents Jµℓ = Qℓu
µ + στℓ τ

µ + σωℓ ω
µ, where the

conductivities σωℓ are given by [1, 3]:

�Axial vortical effect: σωA =
T 2

6
+
µV

2 + µ2A + µ2H
2π2

.

�Helical vortical effects: σωV = − T
2

2π2

∑
σ,λ

qHσ,λLi2(−eqσ,λ·ασ,λ) ≃ 2µHT

π2
ln 2,

σωH = − T
2

2π2

∑
σ,λ

qVσ,λLi2(−eqσ,λ·ασ,λ) ≃ 2µVT

π2
ln 2.

� σωA and σωH are non-vanishing even when µA = µH = 0!

4 Helicity in a constant magnetic field

�Under minimal coupling, ∂µ→ Dµ = ∂µ + iqAµ and

L =
i

2
ψ̄
←→
∂ ψ − qψ̄ /Aψ −mψ̄ψ ⇒ (i/∂ − q /A−m)ψ = 0. (1)

�We take Aµ in the Coulomb gauge, Aµ = (0,A), with A ≡ A(x), such that

E = ∂tA−∇A0 = 0, B = ∇×A, Fµν = −B(gµxgνy − gµygνx). (2)

� In this case, the Dirac Hamiltonian satisfying Hψ = i∂tψ reads

H = mγ0 + γ0γ · π, π = −i∇− qA. (3)

�We seek for h such that [h,H ] = 0. Writing H = mγ0 + 2γ5S · π, we see that

h =
S · π√
H2 −m2

. (4)

�The divergence of JµH reads ∂µJ
µ
H = ψ̄ /∂hψ + /∂ψhψ + h.c.

�Because [H, h] = 0, if Hψ = i∂tψ then Hhψ = i∂t(hψ), such that

/∂hψ = −i(q /A +m)hψ ⇒ ψ̄ /∂hψ = −/∂ψhψ ⇒ ∂µJ
µ
H = 0. (5)

� JµH is conserved in a background magnetic field, even at finite m!

5 Landau levels

�The Dirac eq. can be solved with respect to eigenmodes Uj of H , P y, P z and h:

HUj = EjUj, P yUj = pyjUj, P zUj = pzjUj, hUj = λjUj. (6)

�Transverse dynamics is quantized into Landau levels nj,

E2
j = m2 + (pzj)

2 + 2nj|qB|. (7)

�The lowest Landau level (LLL), nj = 0, exists only when 2σλj = sgn(pzj).

6 Helical separation effect

�The t.e.v.s of the charge currents can be put in the form

Jµℓ = Qℓu
µ + σBℓ B

µ, uµ = δµ0 , Bµ =
1

2
εµναβuνFαβ = Bδµz , (8)

�Qℓu
µ is the classical transport of the charge density Qℓ.

�The anomalous transport component σBℓ B
µ is given only by the LLL:

Chiral magnetic effect: Chiral separation effect: Helical separation effect:

σBV ≃
qµA
2π2

+
qβµVµH

4π2
, σBA ≃

qµV
2π2

+
qβµAµH

4π2
, σBH ≃

q

π2β
ln 2 +

qβµ2

8π2
. (9)

� σBA and σBH are non-vanishing even when µA = µH = 0!
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