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Abstract

We describe a quantum fluid undergoing constant acceleration a in the grand canonical ensemble, in thermal equilibrium at finite inverse temperature Sp. Writing the action of the
density operator p as a Poincare transformation with imaginary parameters, we derive the Kubo-Martin-Schwinger (KMS) relation characterizing the two-point functions. The KMS
relation sets boundary conditions for the Euclidean propagator, identitying points in the 7 — z plane on a circle separated by an angle equal to the thermal acceleration o« = a8r. When

«/2m = p/q is a rational number, we find a fractalization of thermodynamics, similar to the case of states under imaginary rotation. (Based on Ref. [1])
1 Global thermodynamic equilibrium e The KMS5 relations imply:
i , N _ . T~ . —aSY .
e In kinetic theory, a fluid is in thermal equilibrium if fi = [e?* =@ +¢]7!, with e = £1 for Gr(t, z;2') = Gp(t, z;2'),  Sr(t, z;2) = —e Sr(t, z;2'). (10)

Fermi-Dirac/Bose-Einstein statistics. , , , . , , ,
e Keeping these relations with respect to the imaginary time 7 = it, a formal solution can

be written in terms of the Euclidean vacuum propagators,

e Imposing the Boltzmann equation, k"0, fx = C|f| = 0, the temperature four-vector 5* =
ut /T (x) satisfies the Killing equation, 0,8, + 0,8, = 0, while a = p(z)/T'(x) = const.

3.
e 5" can be written in terms of the 10 Killing vectors of Minkowski space |2]: G< (1,2, X") Z G (7 . X'), 1000
J=—00 |
Bt ="+ w2’ (1) o = g |
Sl(r 2 Xy = ) (=17e T S (), 2 X
with constant b and "’ = —w"#, such that 8,0" = 1/T*(x) > 0. j=—o0 2 0
e For constant acceleration: 5"0, = fBr|(1 + az)0; + atd.], [Br,a = const] with j € Z and -1} |
e The density operator corresponding to Eq. (1) reads |3, 4] ! -2 °
| T(j) = T cos(jar) — 5(1 + az)sin(ja), Ll 2
p=exp| —b Pl + @ Vf“”) — ¢ V@) P2 2 "y 1 . 1 2006 -004 -0.02 0.0
( H ok (2) () = Tsin(jo) + 5(1 + az) cos(ja) — — -
where for simplicity, we set « = y = 0 and p was factorized using e Using G2(X, X) = 1/(472AX2) and SE(X, X') = ~ 5 9,62 we find the energy
.~ ' density E = uNT“’/uV to be (in agreement with Refs. [3, 4])
Z k _|_1 wﬂylwmw N AL 1 )bvk (3) ) )
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e For constant acceleration: b = BJ// + Ao, wh” = a(—gMg"* — ¢"*¢"") and N N . | -

| | where Gy (o) = ijl[sm(]a/Q)]_” and Sy(a) = — ijl(_l)] cos(jar/2)/[sin(je/2)]".

p = e_Bﬁ“USZeO‘[?Z, A= (1 —cosa), B= Sm&, (4)
a a

4 Rational acceleration

with a = \/—afay, = afr = const and o = a"/T'(z) the thermal acceleration, while
e [n the case when /21 = p/q is a rational number, the contour closes on itself after ¢

a'd, = (u'0,u")0, = aT?*(z)B7[atd; + (1 + az)0.]. (5) terations:
: Mg =T Rla = % Z
2 Quantum thermal KMS relation
such that I
e The quantum field operator ®(z) is covariant under Poincaré transformations: q—1 < 0
o GEl(r.2) = Gimy, ). -
ib-P —ib-P _ § 7 ANb(+ A1 -1
e P(x)e = d(xr +b), AD(x)A™ = DA P(Ax), (6) =0 B
| q—1 N
where A = 2% (JH) 5 = i(0h0% — 030,,) and D[A]! = e5¥9 ig the spin part of the Sg’Q)(ﬂ ) = Z(—l)je_jo‘soz
inverse Lorentz transformation. [S = 0 for the scalar field; and S = £+°7%+ for the Dirac field] =0 f
e The density operator acts like a Poincaré transformation with imaginary parameters: X ST, 2))- y
o For constant acceleration: p®(t, ¢)p~! = e (¢, %), where (507 = 1407 o Since e—105" — (1), - (2)
- ' 1 (p,q) __ (__1\p+q QP4 =
t = cos(a)t + tsin(a)z + . sin(a), 2 =1sin(a)t + cos(a)z — —|1 —cos(a)].  (7) 5 (T Z<<q>)> (=D)PHSE (T Z)’ 2|
a a such that S = 0 when p + ¢ is odd.
e We consider now the scalar /Dirac Wightman functions: e In this case, both Gy, and S, can be | —/ =
- ) computed in closed form. We find: -16 05 00 05 10
G*(z,2) = (B(2)®(")), §*(z,2') = (V(@)¥(')), o eT@ .,
. S P.q
G (z,2") = (D(2")D(x)), ST (x,x") = —{(U(2")V(x)), (8) & = AR0772 (¢ = D)(g” + 11 + 60¢),

. ~ =P (pq) _ T ()] 2 2 L+ (—1)P
with (A) = Z7'Tr(pA) and Z = Tr(p). Using (A) = Tr(pBpAp~) leads to the KMS Ep" = geo2 @ — Dg +1T)——5—— (12)
relations:
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