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Abstract
We describe a quantum fluid undergoing constant acceleration a in the grand canonical ensemble, in thermal equilibrium at finite inverse temperature βT . Writing the action of the

density operator ρ̂ as a Poincare transformation with imaginary parameters, we derive the Kubo-Martin-Schwinger (KMS) relation characterizing the two-point functions. The KMS
relation sets boundary conditions for the Euclidean propagator, identifying points in the τ − z plane on a circle separated by an angle equal to the thermal acceleration α = aβT . When
α/2π = p/q is a rational number, we find a fractalization of thermodynamics, similar to the case of states under imaginary rotation. (Based on Ref. [1])

1 Global thermodynamic equilibrium

� In kinetic theory, a fluid is in thermal equilibrium if fk = [eβµk
µ−α+ ε]−1, with ε = ±1 for

Fermi-Dirac/Bose-Einstein statistics.

� Imposing the Boltzmann equation, kµ∂µfk = C[f ] = 0, the temperature four-vector βµ =
uµ/T (x) satisfies the Killing equation, ∂µβν + ∂νβµ = 0, while α = µ(x)/T (x) = const.

� βµ can be written in terms of the 10 Killing vectors of Minkowski space [2]:

βµ = bµ +ϖµ
νx

ν, (1)

with constant bµ and ϖµν = −ϖνµ, such that βµβ
µ = 1/T 2(x) > 0.

�For constant acceleration: βµ∂µ = βT [(1 + az)∂t + at∂z], [βT , a ≡ const]

�The density operator corresponding to Eq. (1) reads [3, 4]

ρ̂ = exp

(
−bµP̂

µ +
1

2
ϖµνĴ

µν

)
= e−b̃(ϖ)·P̂eϖ:Ĵ/2, (2)

where for simplicity, we set α = µ = 0 and ρ̂ was factorized using

b̃µ =

∞∑
k=0

ik

(k + 1)!
(ϖµ

ν1ϖ
ν1
ν2 · · ·ϖνk−1

νk)b
νk. (3)

�For constant acceleration: b̃µ = Bδµ0 + Aδµ3 , ϖ
µν = α(−gµtgνz − gµzgνt) and

ρ̂ = e−BĤ+AP̂ z

eαK̂
z

, A =
i

a
(1− cosα), B =

sinα

a
, (4)

with α =
√−αµαµ = aβT = const and αµ = aµ/T (x) the thermal acceleration, while

aµ∂µ = (uν∂νu
µ)∂µ = aT 2(x)β2

T [at∂t + (1 + az)∂z]. (5)

2 Quantum thermal KMS relation

�The quantum field operator Φ̂(x) is covariant under Poincaré transformations:

eib̃·P̂ Φ̂(x)e−ib̃·P̂ = Φ̂(x + b̃), Λ̂Φ̂(x)Λ̂−1 = D[Λ−1]Φ̂(Λx), (6)

where Λ = e−
i
2ϖ:J , (J µν)αβ = i(δµαδ

ν
β − δµβδ

ν
α) and D[Λ]−1 = e

i
2ϖ:S is the spin part of the

inverse Lorentz transformation. [S = 0 for the scalar field; and S = i
2γ

5γ0γ for the Dirac field]

�The density operator acts like a Poincaré transformation with imaginary parameters:

�For constant acceleration: ρ̂Φ̂(t, φ)ρ̂−1 = e−αS0z

Φ̂(t̃, z̃), where [S0z = i
2γ

0γz]

t̃ = cos(α)t + i sin(α)z +
i

a
sin(α), z̃ = i sin(α)t + cos(α)z − 1

a
[1− cos(α)]. (7)

�We consider now the scalar/Dirac Wightman functions:

G+(x, x′) = ⟨Φ̂(x)Φ̂(x′)⟩, S+(x, x′) = ⟨Ψ̂(x)Ψ̂(x′)⟩,
G−(x, x′) = ⟨Φ̂(x′)Φ̂(x)⟩, S−(x, x′) = −⟨Ψ̂(x′)Ψ̂(x)⟩, (8)

with ⟨Â⟩ = Z−1Tr(ρ̂Â) and Z = Tr(ρ̂). Using ⟨Â⟩ = Tr(ρ̂B̂ρ̂Âρ̂−1) leads to the KMS
relations:

�For constant acceleration [1]:

G+(t, z;x′) = G−(t̃, z̃;x′), S+(t, φ;x′) = −e−αS0z

S−(t + iβT , φ + iβTΩ;x
′). (9)

3 Feynman propagator under constant acceleration

�We now consider the Feynman
two-point function,

GF (x, x
′) = ΘC(x, x

′)G+(x, x′)

+ ΘC(x
′, x)G−(x, x′),

where ΘC(x, x
′) is the causal step function along the thermal contour.

�The KMS relations imply:

GF (t̃, z̃;x
′) = GF (t, z;x

′), SF (t̃, z̃;x
′) = −e−αS0z

SF (t, z;x
′). (10)

�Keeping these relations with respect to the imaginary time τ = it, a formal solution can
be written in terms of the Euclidean vacuum propagators,

βU

βT
= 2πT

a
= 25

50 75 1000G
(α)
E (τ, z;X ′) =

∞∑
j=−∞

Gvac
E (τ(j), z(j);X

′),

S
(α)
E (τ, z;X ′) =

∞∑
j=−∞

(−1)je−jαS0z

Svac
E (τ(j), z(j);X

′).

with j ∈ Z and

τ(j) = τ cos(jα)− 1

a
(1 + az) sin(jα),

z(j) = τ sin(jα) +
1

a
(1 + az) cos(jα)− 1

a
.

�Using Gvac
E (X,X ′) = 1/(4π2∆X2) and Svac

E (X,X ′) = γE
µ ∂µG

vac
E , we find the energy

density E = uµT
µνuν to be (in agreement with Refs. [3, 4])

E ξ
KG =

3[αT (x)]4

16π2
[G4(α) + 4ξG2(α)] , ED =

3[αT (x)]4

4π2
S4(α), (11)

where Gn(α) =
∑∞

j=1[sin(jα/2)]
−n and Sn(α) = −

∑∞
j=1(−1)j cos(jα/2)/[sin(jα/2)]n.

4 Rational acceleration

� In the case when α/2π = p/q is a rational number, the contour closes on itself after q
iterations:
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τ(q) = τ, z(q) = z,

such that

G
(p,q)
E (τ, z) =

q−1∑
j=0

Gvac
E (τ(j), z(j)),

S
(p,q)
E (τ, z) =

q−1∑
j=0

(−1)je−jαS0z

× Svac
E (τ(j), z(j)).

� Since e−qαS0z

= (−1)p,

S
(p,q)
E (τ(q), z(q)) = (−1)p+qSp,q

E (τ, z),

such that S
(p,q)
E = 0 when p + q is odd.

� In this case, both Gn and Sn can be
computed in closed form. We find:

E (p,q)
ξ =

[αT (x)]4

480π2
(q2 − 1)(q2 + 11 + 60ξ),

E (p,q)
D =

[αT (x)]4

960π2
(q2 − 1)(7q2 + 17)

1 + (−1)p+q

2
. (12)
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