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Abstract

Recent years have seen an increase in the interest to investigate the thermodynamic properties of strongly-interacting systems under rotation. Such studies are usually
performed using lattice gauge techniques on the Euclidean manifold and with an imaginary angular velocity, 2 = €2;. When v = [5;/2x is a rational number, the
thermodynamics of free scalar fields "fractalizes" in the large volume limit, that is, it depends only on the denominator ¢ of the irreducible fraction v = p/q [1].

The present study considers the same problem for free, massless, fermions at finite temperature ' = 3~ and chemical potential 1« and confirms that the thermodynamics
fractalizes when 1 = 0. Curiously, fractalization has no effect on the chemical potential 1, which dominates the thermodynamics when ¢ is large. The fractal behavior is
shown analytically for the fermionic condensate (this poster), the charge currents and the energy-momentum tensor [3]. For these observables, the limits on the rotation
axis are validated by comparison to the results obtained in [2] for the case of real rotation. Enclosing the system in a fictitious cylinder of radius R and length L. allows
constructing averaged thermodynamic quantities that satisfy the Euler relation and fractalize (see [3]).

Thermal states in the macrocanonical ensemble Fermion condensate fractalization
Rotating massless fermions with vector chemical potential e The imaginary frequency thermal expectation value for the fermion condensate:
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e Free, massless fermions, with charge @ = [d’x Ui (conserved) where s, = sin (”%QI) C,y = COS (“529[) and o, = 2230,
e Quantized field U(z) = > { (x)b; + Vil )dﬂ e On the rotation axis
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along the z axis J* = —i0,, + S, and helicity operator h = S - P/ P, where the which agrees with the results obtained for real rotation [2].
spin matrix S is given by S = %75707 — % (‘g g) . as to diagonalize the density e Consider v = (3{);/2m = p/q rational frequencies (as irreducible fractions)
operator. e Take v = r + ¢@), denote | = 27p/3 and x, = s, /mq
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e Thermal expectation values (A) = Z~1Tr(pA)
eWhenr = ¢, ¢, = (—1)? and s, = z, = 0 = position-independent term.

Definitions e The terms with 1 < r < ¢ vanish when ! — oo.
e Thermal expectation value energy k = p + q odd case
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e Rotating frame effective energy M lg=odda 2= 605%q 2T B x,
EJQ = 5;'7 —Om; = B —op. where A, = 1 <2H§TH> Y <2+2m> with 1) the digamma function.

e Rotating frame (comoving) energy Ej = E; — Qm,; L
— p + ¢ even case
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where v, = ¢ (r/q + 1x,) with ¢ the digamma functlon.
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Imaginary thermal expectation values

e Thermal expectation values become for operator A e The chemical potential contribution to the asymptotic term is independent of
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g 5 oE7 41 ’ e The temperature dependence of the asymptotic term reveals the fractalized ef-
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e Thermal factor becomes (expansion holds for any 55-’) fective temperature T, = T'/q [4]!

Nl — 1 10° - ——————— - —————— - - —
exp(E7) + 1 exp|p (5]“ — iﬂlmj)] +1 i |
_ 9(5;) Z(_l)wle—vﬁé’]@‘eivﬁ{z[mj 4 (9(_530) Z(_l)vevﬁgfe—ivﬁfhmj il 1/2 - . - i
_ v=0
e Thermal expectation values split as § 107" —2/52
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e Here we will focus on the fermion condensate UW. A more extensive analysis, = A
where other observables (like the currents and the energy momentum tensor) /107 A T
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