
„PNRR. Finant,at de Uniunea Europeană –UrmătoareaGenerat, ieUE”

Dirac fermions under imaginary rotation
Tudor Pătuleanu, Dariana Fodor, Victor Ambrus, and Cosmin Crucean
Department of Physics, West University of Timis,oara, Bd. Vasile Pârvan 4, 300223 Timis,oara, Romania

Dirac fermions under imaginary rotation
Tudor Pătuleanu, Dariana Fodor, Victor Ambrus, and Cosmin Crucean
Department of Physics, West University of Timis,oara, Bd. Vasile Pârvan 4, 300223 Timis,oara, Romania

Abstract
Recent years have seen an increase in the interest to investigate the thermodynamic properties of strongly-interacting systems under rotation. Such studies are usuallyperformed using lattice gauge techniques on the Euclidean manifold and with an imaginary angular velocity, Ω = iΩI. When ν = βΩI/2π is a rational number, thethermodynamics of free scalar fields "fractalizes" in the large volume limit, that is, it depends only on the denominator q of the irreducible fraction ν = p/q [1].The present study considers the sameproblem for free,massless, fermions at finite temperatureT = β−1 and chemical potentialµ and confirms that the thermodynamicsfractalizes when µ = 0. Curiously, fractalization has no effect on the chemical potential µ, which dominates the thermodynamics when q is large. The fractal behavior isshown analytically for the fermionic condensate (this poster), the charge currents and the energy-momentum tensor [3]. For these observables, the limits on the rotationaxis are validated by comparison to the results obtained in [2] for the case of real rotation. Enclosing the system in a fictitious cylinder of radius R and length Lz allowsconstructing averaged thermodynamic quantities that satisfy the Euler relation and fractalize (see [3]).

Thermal states in the macrocanonical ensemble

Rotating massless fermions with vector chemical potential

• Rotation frequency Ω 7→ iΩI and chemical potential µ
• Free, massless fermions, with charge Q̂ =

∫
d3x Ψ̂†Ψ̂ (conserved)

•Quantized field Ψ̂(x) =
∑
j

[
Uj(x)b̂j + Vj(x)d̂

†
j

]
• The modes Uj and Vj are chosen to be eigenfunctions of the HamiltonianH =
i∂t = −iγ0γ ·∇ +Mγ0, vertical momentum P z = −i∂z, angular momentumalong the z axis Jz = −i∂φ+ Sz, and helicity operator h = S ·P/P , where the
spin matrixS is given byS = 1

2γ
5γ0γ = 1

2

(
σ 0
0 σ

)
, as to diagonalize the density

operator.
• Density operator describind rigidly-rotating thermal states

ρ̂ = exp
{
−β

(
: Ĥ : −µ : Q̂ : −Ω : Ĵz :

)}
,

• Partition function Z = Tr(ρ̂).
• Thermal expectation values ⟨Â⟩ = Z−1Tr(ρ̂Â)

Definitions

• Thermal expectation value energy
Eσj ≡ Ej − σµ, σ = ±1.

• Rotating frame effective energy
Ẽσj ≡ Eσj − Ωmj = Ẽj − σµ.

• Rotating frame (comoving) energy Ẽj ≡ Ej − Ωmj

Imaginary thermal expectation values

• Thermal expectation values become for operator Â
AΩ
β ≡ ⟨: Â :⟩Ωβ =

∑
j,σ

Cσ(A)
A (Uj, Uj)

eβẼ
σ
j + 1

,

• Thermal factor becomes (expansion holds for any Eσj )
1

exp(Ẽσj ) + 1
≡ 1

exp[β
(
Eσj − iΩImj

)
] + 1

= θ(Eσj )
∞∑
v=1

(−1)v+1e−vβE
σ
j eivβΩImj + θ(−Eσj )

∞∑
v=0

(−1)vevβE
σ
j e−ivβΩImj

• Thermal expectation values split as
AiΩI
β ≡ ⟨: Â :⟩iΩIβ ≡ AiΩI

v=0 +∆AiΩI

•Here we will focus on the fermion condensate Ψ̄Ψ. A more extensive analysis,where other observables (like the currents and the energy momentum tensor)are considered can be found in [3].
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Fermion condensate fractalization

• The imaginary frequency thermal expectation value for the fermion condensate:
FC iΩI

M
=
µ2

2π2
+

2

π2

∞∑
v=1

1

(vβ)2
(−1)v+1

cv
1 + α2

v

cos (vβµαv) ,

where sv = sin
(
vβΩI
2

), cv = cos
(
vβΩI
2

) and αv = 2ρ
vβsv,• On the rotation axis

FC iΩI

M

∣∣∣∣
ρ→0

=
µ2

2π2
+

1

6β2
− Ω2

I

8π2
=

[
µ2

2π2
+

1

6β2
+

Ω2

8π2

]
Ω→iΩI

,

which agrees with the results obtained for real rotation [2].
• Consider ν = βΩI/2π = p/q rational frequencies (as irreducible fractions)
• Take v = r + qQ, denote l = 2πρ/β and xr = lsr/πq

• Split∑∞
v=1 ≡

∑∞
r+qQ=1 ≡

∑∞
Q=0

∑q
r=1• Fractalized value of the fermion condensate:

FC iΩI

M
=
µ2

2π2
+

2

π2β2q2

q∑
r=1

(−1)r+1cr cos (βµqxr)
∞∑
Q=0

(−1)kQ(
Q + r

q

)2
+ x2r

•When r = q, cr = (−1)pQ and sr = xr = 0 ⇒ position-independent term.
• The terms with 1 ≤ r < q vanish when l → ∞.

k = p + q odd case

FC iΩI

M

∣∣∣∣
k=odd

=
µ2

2π2
+

1

6β2q2
−

q−1∑
r=1

(−1)r+1

2π2β2q2
cr
xr

cos (βµqxr) Im [∆ψr] ,

where∆ψr = ψ
(

r
q+ixr+1

2

)
− ψ

(
r
q+ixr

2

) with ψ the digamma function.
k = p + q even case

FC iΩI

M

∣∣∣∣
k=even

=
µ2

2π2
− 1

3β2q2
+

q−1∑
r=1

(−1)r+1

π2β2q2
cr
xr

cos (βµqxr) Imψr,

where ψr = ψ(r/q + ixr) with ψ the digamma function.
• The chemical potential contribution to the asymptotic term is independent of
ν = βΩI/2π!

• The temperature dependence of the asymptotic term reveals the fractalized ef-fective temperature Tq = T/q [4]!
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