

Dirac fermions under imaginary rotation

Tudor Pătuleanu, Dariana Fodor, Victor Ambruș and Cosmin Crucean

Department of Physics, West University of Timișoara, Bd. Vasile Pârvan 4, 300223 Timișoara, Romania

Abstract

Recent years have seen an increase in the interest to investigate the thermodynamic properties of strongly-interacting systems under rotation. Such studies are usually performed using lattice gauge techniques on the Euclidean manifold and with an imaginary angular velocity, $\Omega = i\Omega_I$. When $\nu = \beta\Omega_I/2\pi$ is a rational number, the thermodynamics of free scalar fields "fractalizes" in the large volume limit, that is, it depends only on the denominator q of the irreducible fraction $\nu = p/q$ [1].

The present study considers the same problem for free, massless, fermions at finite temperature $T = \beta^{-1}$ and chemical potential μ and confirms that the thermodynamics fractalizes when $\mu = 0$. Curiously, fractalization has no effect on the chemical potential μ , which dominates the thermodynamics when q is large. The fractal behavior is shown analytically for the fermionic condensate (this poster), the charge currents and the energy-momentum tensor [3]. For these observables, the limits on the rotation axis are validated by comparison to the results obtained in [2] for the case of real rotation. Enclosing the system in a fictitious cylinder of radius R and length L_z allows constructing averaged thermodynamic quantities that satisfy the Euler relation and fractalize (see [3]).

Thermal states in the macrocanonical ensemble

Rotating massless fermions with vector chemical potential

- Rotation frequency $\Omega \mapsto i\Omega_I$ and chemical potential μ
- Free, massless fermions, with charge $\hat{Q}=\int d^3x\, \hat{\Psi}^\dagger \hat{\Psi}$ (conserved)
- Quantized field $\widehat{\Psi}(x) = \sum_{j} \left[U_{j}(x) \hat{b}_{j} + V_{j}(x) \hat{d}_{j}^{\dagger} \right]$
- The modes U_j and V_j are chosen to be eigenfunctions of the Hamiltonian $H=i\partial_t=-i\gamma^0\boldsymbol{\gamma}\cdot\boldsymbol{\nabla}+M\gamma^0$, vertical momentum $P^z=-i\partial_z$, angular momentum along the z axis $J^z=-i\partial_\varphi+S^z$, and helicity operator $h=\mathbf{S}\cdot\mathbf{P}/P$, where the spin matrix \boldsymbol{S} is given by $\boldsymbol{S}=\frac{1}{2}\gamma^5\gamma^0\boldsymbol{\gamma}=\frac{1}{2}\begin{pmatrix}\boldsymbol{\sigma}&0\\0&\boldsymbol{\sigma}\end{pmatrix}$, as to diagonalize the density operator.
- Density operator describind rigidly-rotating thermal states

$$\hat{\rho} = \exp\left\{-\beta\left(:\widehat{H}: -\mu: \widehat{Q}: -\Omega: \widehat{J}^z:\right)\right\},\,$$

- Partition function $\mathcal{Z} = \operatorname{Tr}(\hat{\rho})$.
- Thermal expectation values $\langle \widehat{A} \rangle = \mathcal{Z}^{-1} \operatorname{Tr}(\widehat{\rho} \widehat{A})$

Definitions

Thermal expectation value energy

$$\mathcal{E}_j^{\sigma} \equiv E_j - \sigma \mu, \quad \sigma = \pm 1.$$

Rotating frame effective energy

$$\tilde{\mathcal{E}}_{i}^{\sigma} \equiv \mathcal{E}_{i}^{\sigma} - \Omega m_{i} = \tilde{E}_{i} - \sigma \mu.$$

• Rotating frame (comoving) energy $\tilde{E}_{i} \equiv E_{i} - \Omega m_{i}$

Imaginary thermal expectation values

ullet Thermal expectation values become for operator \widehat{A}

$$A^{\Omega}_{\beta} \equiv \langle : \widehat{A} : \rangle^{\Omega}_{\beta} = \sum_{j,\sigma} C_{\sigma}(\mathcal{A}) \frac{\mathcal{A}(U_j, U_j)}{e^{\beta \widetilde{\mathcal{E}}^{\sigma}_j} + 1},$$

ullet Thermal factor becomes (expansion holds for any \mathcal{E}_i^σ)

$$\frac{1}{\exp(\tilde{\mathcal{E}}_{j}^{\sigma}) + 1} \equiv \frac{1}{\exp[\beta \left(\mathcal{E}_{j}^{\sigma} - i\Omega_{I}m_{j}\right)] + 1}$$

$$= \theta(\mathcal{E}_{j}^{\sigma}) \sum_{v=1}^{\infty} (-1)^{v+1} e^{-v\beta \mathcal{E}_{j}^{\sigma}} e^{iv\beta \Omega_{I}m_{j}} + \theta(-\mathcal{E}_{j}^{\sigma}) \sum_{v=0}^{\infty} (-1)^{v} e^{v\beta \mathcal{E}_{j}^{\sigma}} e^{-iv\beta \Omega_{I}m_{j}}$$

Thermal expectation values split as

$$A_{\beta}^{i\Omega_I} \equiv \langle : \widehat{A} : \rangle_{\beta}^{i\Omega_I} \equiv A_{v=0}^{i\Omega_I} + \Delta A^{i\Omega_I}$$

• Here we will focus on the fermion condensate $\bar{\Psi}\Psi$. A more extensive analysis, where other observables (like the currents and the energy momentum tensor) are considered can be found in [3].

References

[1] V. E. Ambruş, M. N. Chernodub, Phys. Rev. D **108** (2023), 085016.

[2] V. E. Ambruș, JHEP **08** (2020), 016.

[3] T. Pătuleanu, D. Fodor, V. E. Ambruș, C. Crucean, Work in progress

[4] M. N. Chernodub, arXiv:2210.05651 [quant-ph].

Fermion condensate fractalization

• The imaginary frequency thermal expectation value for the fermion condensate:

$$\frac{FC^{i\Omega_I}}{M} = \frac{\mu^2}{2\pi^2} + \frac{2}{\pi^2} \sum_{v=1}^{\infty} \frac{1}{(v\beta)^2} (-1)^{v+1} \frac{c_v}{1 + \alpha_v^2} \cos(v\beta\mu\alpha_v),$$

where $s_v=\sin\left(\frac{v\beta\Omega_I}{2}\right)$, $c_v=\cos\left(\frac{v\beta\Omega_I}{2}\right)$ and $\alpha_v=\frac{2\rho}{v\beta}s_v$,

On the rotation axis

$$\frac{FC^{i\Omega_I}}{M}\Big|_{\rho\to 0} = \frac{\mu^2}{2\pi^2} + \frac{1}{6\beta^2} - \frac{\Omega_I^2}{8\pi^2} = \left[\frac{\mu^2}{2\pi^2} + \frac{1}{6\beta^2} + \frac{\Omega^2}{8\pi^2}\right]_{\Omega\to i\Omega_I},$$

which agrees with the results obtained for real rotation [2].

- Consider $\nu=\beta\Omega_I/2\pi=p/q$ rational frequencies (as irreducible fractions)
- Take v=r+qQ, denote $l=2\pi\rho/\beta$ and $x_r=ls_r/\pi q$
- Split $\sum_{v=1}^{\infty} \equiv \sum_{r+qQ=1}^{\infty} \equiv \sum_{Q=0}^{\infty} \sum_{r=1}^{q}$
- Fractalized value of the fermion condensate:

$$\frac{FC^{i\Omega_I}}{M} = \frac{\mu^2}{2\pi^2} + \frac{2}{\pi^2\beta^2q^2} \sum_{r=1}^{q} (-1)^{r+1} c_r \cos(\beta \mu q x_r) \sum_{Q=0}^{\infty} \frac{(-1)^{kQ}}{\left(Q + \frac{r}{q}\right)^2 + x_r^2}$$

- When r=q, $c_r=(-1)^{pQ}$ and $s_r=x_r=0\Rightarrow$ position-independent term.
- The terms with $1 \le r < q$ vanish when $l \to \infty$.

$$k = p + q$$
 odd case

$$\frac{FC^{i\Omega_I}}{M}\Big|_{k=\text{odd}} = \frac{\mu^2}{2\pi^2} + \frac{1}{6\beta^2 q^2} - \sum_{r=1}^{q-1} \frac{(-1)^{r+1} c_r}{2\pi^2 \beta^2 q^2} \cos(\beta \mu q x_r) \operatorname{Im}\left[\Delta \psi_r\right],$$

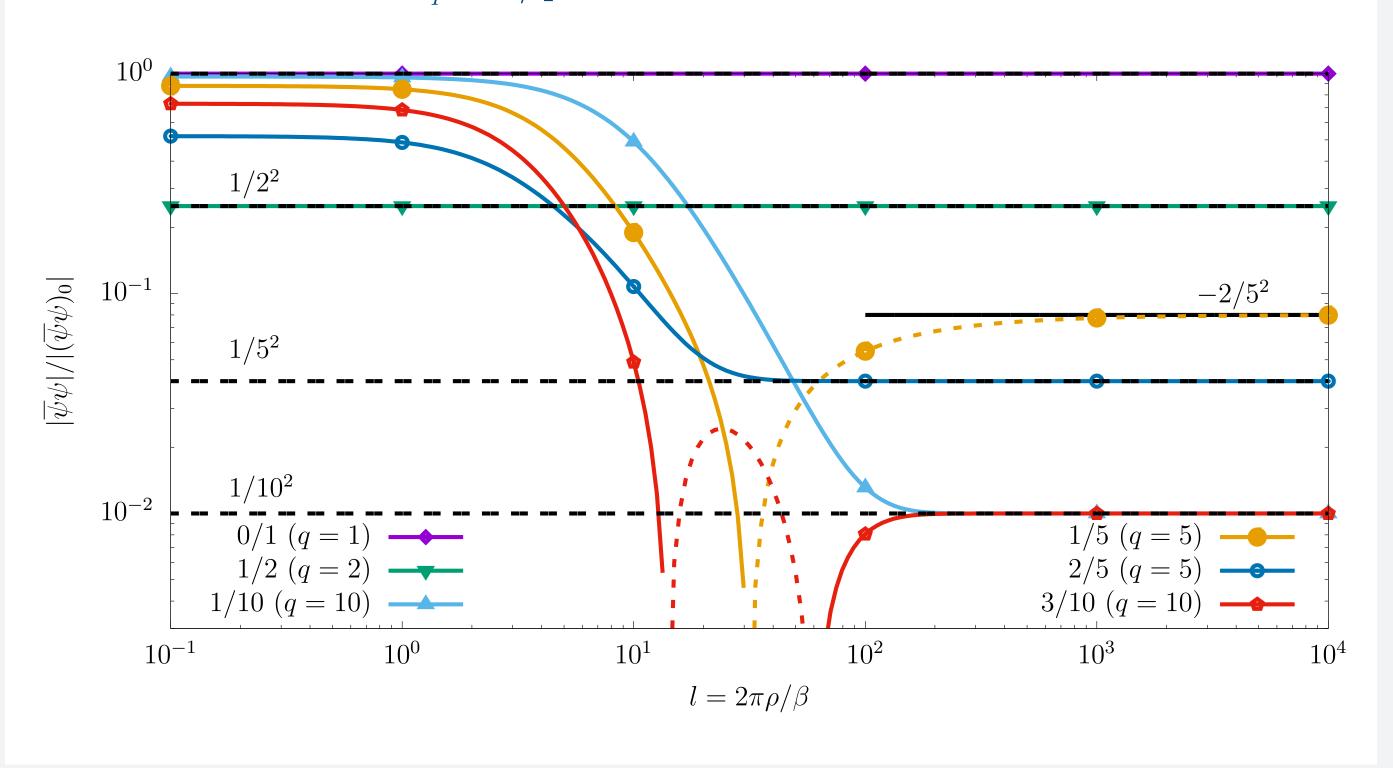
where $\Delta\psi_r=\psi\left(\frac{\frac{r}{q}+ix_r+1}{2}\right)-\psi\left(\frac{\frac{r}{q}+ix_r}{2}\right)$ with ψ the digamma function.

$$k = p + q$$
 even case

$$\frac{FC^{i\Omega_I}}{M}\Big|_{k=\text{even}} = \frac{\mu^2}{2\pi^2} - \frac{1}{3\beta^2 q^2} + \sum_{r=1}^{q-1} \frac{(-1)^{r+1} c_r}{\pi^2 \beta^2 q^2} \frac{c_r}{x_r} \cos(\beta \mu q x_r) \operatorname{Im} \psi_r,$$

where $\psi_r = \psi(r/q + ix_r)$ with ψ the digamma function.

- The chemical potential contribution to the asymptotic term is independent of $\nu=\beta\Omega_I/2\pi!$
- The temperature dependence of the asymptotic term reveals the fractalized effective temperature $T_q = T/q$ [4]!



Financial support by the European Union - NextGenerationEU through the grant No. 760079/23.05.2023, funded by the Romanian ministry of research, innovation and digitization through Romania's National Recovery and Resilience Plan, call no. PNRR-III-C9-2022-I8, is gratefully acknowledged.

