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In this study, we calculate the shear viscosity for rotating fermions with spin-half under conditions of high temperature and density. We employ the Kubo
formalism, rooted in finite-temperature quantum field theory, to compute the field correlation functions essential for this evaluation. The one-loop diagram
pertinent to shear viscosity is analyzed within the context of curved space, utilizing tetrad formalism as an effective approach in cylindrical coordinates. Our
findings focus on high angular velocities, ranging from 0.1 to 1 GeV, which align with experimental expectations. Furthermore, we explore the inter-relationship
between the chemical potential and angular velocity in this study.

1 Motivation
The motivation is to study how finite rotation impacts transport coefficients, especially shear viscosity in a fermion-dominated medium subject to high

angular velocity. Employing the Kubo formalism, we incorporate the influence of rotation in our calculations by using the momentum space propagator for
fermions, derived via the Fock-Schwinger method. The role of angular velocity is notably apparent in two areas:
• it modifies the distribution function through the summation of Matsubara frequencies, and
• it is present in the numerator of the shear viscosity expression via trace evaluations.

2 Ingredients
The metric tensor in a rotating setting at an angular velocity Ω is

gµν =
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1−

(
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)
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 . (1)

And, in curved spacetime the energy-momentum tensor is expressed as

T µν =
i

4

(
ψγ̃µD̃νψ + ψγ̃νD̃µψ

)
+ h.c, (2)

where ψ and ψ are the Dirac field operator and its conjugate, respectively, and h.c denotes the Hermitian conjugate. In a uniformly rotating frame, D̃µ is

D̃µ =

(
∂t − i

ΩΣ3

2
,−∂x,−∂y,−∂z

)
, (3)

where Σ3 = (i/2)
[
γ1, γ2

]
. The spacetime dependent gamma matrices γ̃µ in tetrad system are

γ̃0 = γ0 , γ̃0 = γ0 − xΩγ2 + yΩγ1 , γ̃1 = γ1 + yΩγ0 , γ̃1 = −γ1 ,
γ̃2 = γ2 − xΩγ0 , γ̃2 = −γ2 , γ̃3 = γ3 , γ̃3 = −γ3 , (4)

where γµ are the gamma matrices in Minkowski space. The final piece is the Kubo formula for shear viscosity

η = − 1

10
lim
q0→0

ρη(q0)

q0
, (5)

where ρη(q) is the spectral function of shear viscosity calculated from the two-point correlation function of the shear stress tensor, πµν = ∆µν
αβ T

αβ, and q0 is
the temporal component of the four-momentum.

3 Shear viscosity expression
Formula for calculating the shear viscosity in a rotating, hot, and dense fermionic system is

η(T, µ,Ω) =
1
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where N±µ,±Ω/2 =
∑
s=±1

nF (Ep + sµ + sΩ/2)
{
1− nF (Ep + sµ + sΩ/2)

}
, N±µ,∓Ω/2 =

∑
λ=±1

nF (Ep + λµ− λΩ/2)
{
1− nF (Ep + λµ− λΩ/2)

}
.

This formula is particularly relevant for a hadronic medium consisting of spin-1/2 particles. However, it’s crucial to maintain the magnitude of Ω at or above
0.1 GeV to apply this result effectively. The influence of Ω is incorporated both in the Fermi-Dirac distribution function and the numerator of the expression.
This indicates that Ω functions similarly to an effective chemical potential within the medium.

Figura 1: Behaviour of η with T for Ω = 0.1, 0.5, 1.0 GeV at µ = 0.05 GeV and 0.4 GeV.

References
S. Satapathy, R. Singh, P. Panday, S. A. Khan and D. Dey, [arXiv:2309.05284 [hep-ph]].


