

Searches for Chiral Magnetic and Chiral Vortical Effects with ALICE

A. Dobrin for the ALICE Collaboration (Institute of Space Science – INFLPR Subsidiary)

The 8th International Conference on Chirality, Vorticity and Magnetic Field in Quantum Matter

22–26 Jul 2024 West University of Timisoara

Chiral effects in heavy-ion collisions

http://www.physics.adelaide.edu.au/theory/ staff/leinweber/VisualQCD/Nobel/

QCD domains with P and CP symmetries locally broken

Electric current along the magnetic field \rightarrow charge separation

Chiral Magnetic Effect (CME)

$$J_{\rm V}^{\rm CME} = \frac{\mu_{\rm A}}{2\pi^2} e \vec{B}$$

Chiral Separation Effect (CSE)

$$J_{\rm A}^{\rm CSE} = \frac{\mu_{\rm V}}{2\pi^2} e \vec{B}$$

Chiral Vortical Effect (CVE)

$$J_{\rm V}^{\rm CVE} = \frac{\mu_{\rm V} \mu_{\rm A}}{\pi^2} \vec{\omega}$$

D. Kharzeev, PLB 633, 260 (2006); D. Kharzeev et al., NPA 797, 67 (2007); D. Son et al., PRL 103, 191601 (2009); Y. Burnier et al., PRL 107, 052303 (2011); D. Kharzeev, PRL 106, 062301 (2011); D. Kharzeev et al., PRD 83, 085007 (2011); D. Kharzeev et al, PPNP 88, 1 (2016)

 $\mathsf{CME} + \mathsf{CSE} \rightarrow \mathsf{Chiral} \text{ Magnetic Wave (CMW)}$

Chiral effects in heavy-ion collisions

http://www.physics.adelaide.edu.au/theory/ staff/leinweber/VisualQCD/Nobel/

QCD domains with P and CP symmetries locally broken

Electric current along the magnetic field \rightarrow charge separation

Chiral Magnetic Effect (CME)

$$J_{\rm V}^{\rm CME} = \frac{\mu_{\rm A}}{2\pi^2} e \vec{B}$$

Chiral Separation Effect (CSE)

$$J_{\rm A}^{\rm CSE} = \frac{\mu_{\rm V}}{2\pi^2} e \vec{B}$$

Chiral Vortical Effect (CVE)

$$J_{\rm V}^{\rm CVE} = \frac{\mu_{\rm V} \mu_{\rm A}}{\pi^2} \vec{\omega}$$

 $\mathsf{CME} + \mathsf{CSE} \rightarrow \mathsf{Chiral} \text{ Magnetic Wave (CMW)}$

D. Kharzeev, PLB 633, 260 (2006); D. Kharzeev et al., NPA 797, 67 (2007); D. Son et al., PRL 103, 191601 (2009); Y. Burnier et al., PRL 107, 052303 (2011); D. Kharzeev, PRL 106, 062301 (2011); D. Kharzeev et al., PRD 83, 085007 (2011); D. Kharzeev et al, PPNP 88, 1 (2016)

Interpretation of the results complicated by background contributions

07/21/24

A. Dobrin - Chirality 2024

3

Observables

CME / CVE

 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}} \sim 1 + 2v_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + \dots,$

2-particle correlator

$$\delta_{m} = \langle \cos[m(\varphi_{a} - \varphi_{b})] \rangle$$

STAR, PRC 81, 054908 (2009)

3-particle correlator

$$\boldsymbol{\gamma}_{m,n} = \langle \cos(m \, \boldsymbol{\varphi}_a + n \, \boldsymbol{\varphi}_b - (m+n) \, \boldsymbol{\Psi}_{|m+n|}) \rangle$$
 S. Voloshin, PRC 70, 057901 (2004)

Observables

CME / CVE

 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}} \sim 1 + 2v_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + \dots,$

2-particle correlator $\delta_{m} = \langle \cos[m(\varphi_{a} - \varphi_{b})] \rangle$ STAR, PRC 81, 054908 (2009)

3-particle correlator

$$\begin{split} \boldsymbol{\gamma}_{m,n} = & \langle \cos \left(m \, \boldsymbol{\varphi}_a + n \, \boldsymbol{\varphi}_b - (m + n) \, \boldsymbol{\Psi}_{|m+n|} \right) \rangle \\ & \text{S. Voloshin, PRC 70, 057901 (2004)} \end{split}$$

CMW

Normalized slope r_n^{Norm} of anisotropic flow difference vs. charge asymmetry

$$\Delta v_n^{Norm} = \frac{v_n - v_n^{+}}{(v_n^{-} + v_n^{+})/2} \propto r_n^{Norm} A \qquad A = \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

Integral covariance $\Delta IC = \langle v_n^{\pm} A \rangle - \langle v_n^{\pm} \rangle \langle A \rangle$

S. Voloshin and R. Belmont, NPA 931, 992 (2014)

A Large Ion Collider Experiment

- Inner Tracking System (ITS)
 - Tracking, vertexing
- Time Projection Chamber (TPC)
 - Tracking, vertexing, particle identification based on specific energy loss, Ψ_n
- Time-of-Flight (TOF)
 - Particle identification based on flight time
- V0 detector
 - Triggering, centrality, Ψ_n
- Track selection
 - 0.2 < $p_{\rm T}$ < 5 GeV/*c*, $|\eta|$ < 0.8
 - Pb–Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ - ~235M events
 - Xe–Xe at $\sqrt{s_{NN}}$ = 5.44 TeV
 - ~1M events

07/21/24

Chiral Magnetic Effect

CME @ LHC

- Strong centrality dependence consistent with naive expectations from CME
- Similar magnitude between RHIC and LHC
 - Different dilution effects (3x larger $dN_{ch}/d\eta$ at LHC than at RHIC)
 - Different magnitude of the magnetic field
- Large contribution from background \rightarrow local charge conservation (LCC) coupled with anisotropic flow

S. Schlichting and S. Pratt, PRC 83, 014913 (2011)

- Various approaches used to disentangle signal from background
 - Vary the background $(v_2) \rightarrow$ event shape engineering
 - "Killing" the signal (B) \rightarrow higher harmonics
 - Vary the signal (B) \rightarrow different collision systems

Varying the background using event shape engineering

CME with ESE (I)

ALI-PREL-550463

• q_2^{VOC} used to select events with 30% larger or 25% smaller v_2 than the average

CME with ESE (I)

- q_2^{VOC} used to select events with 30% larger or 25% smaller v_2 than the average
- $\gamma_{\alpha\beta}$ contains potential CME signal as well as background effects
 - Background contributions are suppressed at the level of v_2
- $\gamma_{\alpha\beta}$ depends on the event shape selection in a given centrality bin 07/21/24 A. Dobrin - Chirality 2024

CME with ESE (II)

ALI-PREL-550475

- γ_{ab} (opp-same) can be used to study the CME
 - Difference is positive for all centrality classes and decreases with centrality and v_2 (in a given centrality bin)

CME with ESE (II)

- γ_{ab} (opp-same) can be used to study the CME
 - Difference is positive for all centrality classes and decreases with centrality and v_2 (in a given centrality bin)
 - Difference approximately scales with v_2 and multiplicity \rightarrow mostly background contribution

Does magnetic field depend on v_2 in initial state models?

- Perform a MC Glauber simulation to evaluate the dependence of the CME signal on v_{2}
 - Parameters are tuned to ALICE results
 - Calculate magnetic field at the origin using spectators with the proper time $\tau=0.1$ fm
- $|B|^2 \cos(2(\Psi_{\rm R}-\Psi_2)))$, the expected contribution of the CME to $\gamma_{\rm ab}$, shows a strong dependence on v_2 07/21/24 A. Dobrin - Chirality 2024

 $imes rac{(oldsymbol{x}'_ot - oldsymbol{x}_ot) imes oldsymbol{e}_z}{\left[(oldsymbol{x}'_ot - oldsymbol{x}_ot)^2 + au^2 \sinh(Y_0 \mp \eta)^2
ight]^{3/2}}$

D. Kharzeev et al., NPA 803, 227 (2008)

Relating data and models

• Fit γ_{ab} (opp-same) and $\langle |B|^2 \cos(2(\Psi_B - \Psi_2)) \rangle$ with a linear function to disentangle the potential CME signal from background

$$P_1(v_2) = p_0(1 + p_1(v_2 - \langle v_2 \rangle) / \langle v_2 \rangle)$$

07/21/24

ALI-PREL-550493

• Extract the CME fraction, f_{CME} relating the slopes of data and model fits according to

$$f_{\rm CME} * p_{1,MC} + (1 - f_{\rm CME}) * 1 = p_{1,data}$$

• Assumption: background contribution scales linearly with v_2 and the corresponding slope is unity 07/21/24 A. Dobrin - Chirality 2024 LICE

- CME fraction in 0–5% is currently statistically limited
- Combining the points from 5–60% gives
 - f_{CME} (Glauber) = 0.028 ± 0.021 → 6.4% at 95% C.L.
 - f_{CME} (T_RENTo) = 0.025 ± 0.018 → 5.5% at 95% C.L.

"Killing" the signal using higher harmonics ALICE, JHEP 09, 160 (2020)

2-particle correlators

- Weak charge dependence, except δ_1
 - Dominated by background effects \rightarrow constrain background in $\gamma_{1,1}$

3-particle correlators

- $\gamma_{1,1}$ and $\gamma_{1,-3}$ sensitive to CME
- $\gamma_{1,2}$ and $\gamma_{2,2}$ probe only the background
- Significant charge dependence, except $\gamma_{2,2}$
 - Increases from central to peripheral collisions

3-particle correlators

21

- $\gamma_{1,1}$ and $\gamma_{1,-3}$ sensitive to CME
 - $\gamma_{1,2}$ and $\gamma_{2,2}$ probe only the background
 - Significant charge dependence, except $\gamma_{2,2}$
 - Increases from central to peripheral collisions

 $\gamma_{1,1}$ and $\gamma_{1,2}$ used to estimate the background contribution to $\gamma_{1,1}$

$$\Delta \gamma_{1,1} \approx \kappa_2 v_2 \Delta \delta_1$$

$$\Delta \gamma_{1,2} \approx \kappa_3 v_3 \Delta \delta_1 \longrightarrow \Delta \gamma_{1,1}^{\text{Bkg}} \approx \Delta \gamma_{1,2} \times \frac{v_2}{v_3} \frac{\kappa_2}{\kappa_3}$$

$$\Delta \gamma_{2,2} \approx \kappa_4 v_4 \Delta \delta_2$$

İSS

\$0.002

 $\Delta \gamma_{1,1} (\times 10^3)$

07/21/24

ALICE. arXiv: 2211.04384

AVFD $(n_s/s = 0.03 - 0.06 - LCC = 30 - 60\%)$

THE PARTY

ANALY STRAT

10

30

40

Centrality (%)

50

60

70

(c)

(d)

0.004 Pb-Pb, √s_{NN} = 5.02 TeV

Blast wave + LCC

ALICE

Model comparisons

- Blast-Wave + Local Charge Conservation (LCC)
 - Tune the parameters in each centrality class to reproduce v_2 and p_T spectra of π , K, p
 - Tune the number of sources emitting balancing pairs
 - Underestimates Δγ_{1,1} by up to ≈40%
 - Disagreement increases from central to peripheral collisions
- Anomalous Viscous Fluid Dynamics (AVFD)
 - EbyE IC + E/M fields (field lifetime as input)
 - Tune the parameters in each centrality class to reproduce v₂ and multiplicity P. Christakoglou et al., EPJC 81, 717 (2021)
 - Good agreement with data points
 - Non-zero values for signal

S. Shi et al., AP 394, 50 (2018) Y. Jiang et al., CPC 42, 011001 (2018)

- Combining the points from 0–40% •
 - $f_{\text{CMF}}^{2.76 \text{ TeV}} = -0.021 \pm 0.045 \rightarrow 18\% \text{ at } 95\% \text{ C.L.}$
 - $f_{\text{CME}}^{5.02 \text{ TeV}} = 0.003 \pm 0.029 \rightarrow 15\% \text{ at } 95\% \text{ C.L.}$

Assumption: $\kappa_2 \approx \kappa_3$

 $\Delta \gamma_{1,1}$

Varying the signal using different collision systems: Xe–Xe vs Pb–Pb collisions ALICE, PLB 856, 138862 (2024)

CME in Xe–Xe and Pb–Pb collisions

- Strong dependence on the charge
- Qualitatively similar centrality dependence
 - Larger magnitude in Xe–Xe than in Pb–Pb collisions
 - Dilution effects arising from different number of particles (CME ~ 1/M)
- Similar values in Xe–Xe and Pb–Pb collisions within uncertainties (vs $dN_{ch}/d\eta$)

Model comparisons

- ALICE
- Blast-Wave + Local Charge Conservation (LCC)
 - Describes fairly well the measured data points
 - Background dominates measurements
 - Not observed in Pb-Pb collisions

- Anomalous Viscous Fluid Dynamics (AVFD)
 - Good agreement with data points
 - Signal consistent with zero

P. Christakoglou et al., EPJC 81, 717 (2021)

S. Shi et al., AP 394, 50 (2018) Y. Jiang et al., CPC 42, 011001 (2018)

iss CME fraction in Xe–Xe and Pb–Pb collisions

- γ_{ab} (opp-same) can be used to study CME
 - Similar values in Xe–Xe and Pb–Pb collisions (vs $dN_{ch}/d\eta$) \rightarrow large background contribution

ALICF

CME fraction in Xe–Xe and Pb–Pb collisions

Xe–Xe $\sqrt{s_{NN}}$ = 5.44 TeV

Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV

1500

A. Dobrin - Chirality 2024

2000

 $dN_{ch}/d\eta$

- γ_{ab} (opp-same) can be used to study CME
 - Similar values in Xe–Xe and Pb–Pb collisions (vs $dN_{ch}/d\eta$) \rightarrow large background contribution

500

1000

CME fraction extracted using a two-component approach

50

60

Centrality (%)

0

- Assumption: both signal and background scale with $dN_{ch}/d\eta$
 - $dN_{ch}/d\eta$ used to compensate for dilution
- $\langle |B|^2 \cos(2(\Psi_p \Psi_p)) \rangle$ from MC simulations

07/21/24

² - γ^{same})/ν₂ × 10³

(γ^{opposite} -

10

5

0

ALICE

 $|\eta| < 0.8$

 $0.2 < p_{_{T}} < 5.0 \text{ GeV/}c$

20

10

$$f_{CME} = \frac{sB}{sB + bv_2}$$

iss CME fraction in Xe–Xe and Pb–Pb collisions

- Consistent with 0 for 0–30% and then becomes positive
- Combining the points from 0–70%
 - $f_{\text{CME}}^{\text{Xe}}$ = -0.003 ± 0.010 → 2% at 95% C.L.
 - $f_{\text{CME}^{\text{Pb}}}$ = 0.147 ± 0.061 → 25% at 95% C.L.

 $f_{\rm CME} = \frac{sB}{sB+bv_2}$

Chiral Magnetic Wave ALICE, JHEP 12, 067 (2023)

v_2 and v_3 vs. A

 v_2 and v_3 vs. A

.Norn 3

07/21/24

v_2 and v_3 vs. A

- Finite *r*_n^{Norm}
- r_2^{Norm} consistent with r_3^{Norm}
 - No particle type dependence
- Good agreement with CMS results and BW calculations

A. Dobrin - Chirality 2024

CMW fraction

- Δ IC approximately scales with $v_2 \rightarrow$ large background contribution
- f_{CMW} extracted by fitting ΔIC vs. v_2 with a linear function av_2+b
- Combining the points from 10–60 %
 - f_{CMW} = 0.081 ± 0.055 → 26% at 95% C.L.

07/21/24

 $f_{\rm CMW} = \frac{b}{a \langle v_2 \rangle + b}$

C. Wang et al., PLB 820, 136580 (2021)

Chiral Vortical Effect

ALI-PREL-558122

ALI-PREL-558102

- Avoid CME ambiguity by using Λ baryon ($\Lambda \rightarrow \pi p$)
- Significant δ and γ separation of Λ -p
 - ~10 times larger than CME
 - Increasing with centrality
- Close to zero δ and γ separation of Λ -h

CVE: differential analysis

SS

- Larger $\Delta \delta$ and $\Delta \gamma$ for larger $\sum p_{T}$
 - Larger η gap \rightarrow small $\Delta \delta$
 - Non-flow contributions?
- Larger η gap \rightarrow moderate $\Delta \gamma$
- Constrain theoretical models

Summary

- Anomalous chiral searches performed in different collision systems
 - Background dominates the measurements
 - Different approaches used to separate the signal from the background

3-particle correlator: differential results in Xe–Xe and Pb–Pb collisions

ALICE, PLB 856, 138862 (2024)

