

Searches for Chiral Magnetic and Chiral Vortical Effects with ALICE

A. Dobrin for the ALICE Collaboration (Institute of Space Science – INFLPR Subsidiary)

The 8th International Conference on Chirality, Vorticity and Magnetic **Field in Quantum Matter**

22-26 Jul 2024 West University of Timisoara

Chiral effects in heavy-ion collisions

http://www.physics.adelaide.edu.au/theory/ staff/leinweber/VisualQCD/Nobel/

QCD domains with P and CP symmetries locally broken

Electric current along the magnetic field \rightarrow charge separation

$$
J_V^{\text{CME}} = \frac{\mu_A}{2\pi^2} e \vec{B}
$$
 J_A^{C}

Chiral Magnetic Effect (CME) Chiral Separation Effect (CSE) Chiral Vortical Effect (CVE)

$$
J_{\rm A}^{\rm CSE} = \frac{\mu_{\rm V}}{2\pi^2} e \vec{B}
$$
 $J_{\rm V}^{\rm C}$

$$
J_V^{\text{CVE}} = \frac{\mu_V \mu_A}{\pi^2} \vec{\omega}
$$

D. Kharzeev, PLB 633, 260 (2006); D. Kharzeev et al., NPA 797, 67 (2007); D. Son et al., PRL 103, 191601 (2009); Y. Burnier et al., PRL 107, 052303 (2011); D. Kharzeev, PRL 106, 062301 (2011); D. Kharzeev et al., PRD 83, 085007 (2011); D. Kharzeev et al, PPNP 88, 1 (2016)

CME + CSE → Chiral Magnetic Wave (CMW)

Chiral effects in heavy-ion collisions

http://www.physics.adelaide.edu.au/theory/ staff/leinweber/VisualQCD/Nobel/

QCD domains with P and CP symmetries locally broken

Electric current along the magnetic field \rightarrow charge separation

$$
J_V^{\text{CME}} = \frac{\mu_A}{2\pi^2} e \vec{B}
$$
 J_A^{C}

Chiral Magnetic Effect (CME) Chiral Separation Effect (CSE) Chiral Vortical Effect (CVE)

$$
J_{\rm A}^{\rm CSE} = \frac{\mu_{\rm V}}{2\pi^2} e \vec{B}
$$
 $J_{\rm V}^{\rm C}$

$$
J_V^{\text{CVE}} = \frac{\mu_V \mu_A}{\pi^2} \vec{\omega}
$$

CME + CSE → Chiral Magnetic Wave (CMW)

D. Kharzeev, PLB 633, 260 (2006); D. Kharzeev et al., NPA 797, 67 (2007); D. Son et al., PRL 103, 191601 (2009); Y. Burnier et al., PRL 107, 052303 (2011); D. Kharzeev, PRL 106, 062301 (2011); D. Kharzeev et al., PRD 83, 085007 (2011); D. Kharzeev et al, PPNP 88, 1 (2016)

Interpretation of the results complicated by background contributions

Observables

CME / CVE

 $\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi_{\alpha}}\sim 1+2v_{1,\alpha}\cos(\Delta\varphi_{\alpha})+2a_{1,\alpha}\sin(\Delta\varphi_{\alpha})+2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha})+...,$

2-particle correlator

$$
\delta_m = \langle \cos[m(\varphi_a - \varphi_b)] \rangle
$$

STAR, PRC 81, 054908 (2009)

3-particle correlator

$$
\rangle] \rangle \qquad \qquad \mathcal{Y}_{m,n} = \langle \cos(m \varphi_a + n \varphi_b - (m+n) \Psi_{|m+n|}) \rangle
$$

s. Voloshin, PRC 70, 057901 (2004)

Observables

CME / CVE

 $\frac{dN}{d\Delta\varphi_{\alpha}} \sim 1 + 2v_{1,\alpha}\cos(\Delta\varphi_{\alpha}) + 2a_{1,\alpha}\sin(\Delta\varphi_{\alpha}) + 2v_{2,\alpha}\cos(2\Delta\varphi_{\alpha}) + ...,$

 $\delta_m = \langle \cos[m(\varphi_a - \varphi_b)] \rangle$ $\gamma_{m,n}$ 2-particle correlator

STAR, PRC 81, 054908 (2009)

3-particle correlator

$$
\mathcal{Y}_{m,n} = \langle \cos\left(m \varphi_a + n \varphi_b - (m+n)\Psi_{|m+n|}\right) \rangle
$$

s. Voloshin, PRC 70, 057901 (2004)

CMW

Normalized slope r_n^{Norm}

 v_n^- ⁺

 $(v_n^- + v_n^+)/2$

 $A.$ Dobrin - Chirality 2024 5

 N^+ + N^-

 $\propto r_n^{Norm} A$ *A* = $\frac{N^+ - N^-}{N^+ - N^-}$

A Large Ion Collider Experiment

- Inner Tracking System (ITS)
	- Tracking, vertexing
- Time Projection Chamber (TPC)
	- Tracking, vertexing, particle identification based on specific energy loss, *Ψ*ⁿ
- Time-of-Flight (TOF)
	- Particle identification based on flight time
- V0 detector
	- Triggering, centrality, *Ψ*ⁿ
- **Track selection**
	- $0.2 < p_{\tau} < 5$ GeV/*c*, $|\eta| < 0.8$
		- Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV
			- \sim 235M events
		- $Xe-Xe$ at $\sqrt{s_{NN}}$ = 5.44 TeV
			- $~\sim$ 1M events

Chiral Magnetic Effect

CME @ LHC

- Strong centrality dependence consistent with naive expectations from CME
- Similar magnitude between RHIC and LHC
	- Different dilution effects (3x larger d*N*ch/d*η* at LHC than at RHIC)
	- Different magnitude of the magnetic field
- Large contribution from background \rightarrow local charge conservation (LCC) coupled with anisotropic flow

S. Schlichting and S. Pratt, PRC 83, 014913 (2011)

- Various approaches used to disentangle signal from background
	- Vary the background $(v_2) \rightarrow$ event shape engineering
	- "Killing" the signal $(B) \rightarrow$ higher harmonics
	- Vary the signal (B) \rightarrow different collision systems

Varying the background using event shape engineering

CME with ESE (I)

ALI-PREL-550463

• $\,$ $\,$ $q_2^{\,\rm \vee 0C}$ used to select events with 30% larger or 25% smaller $\,$ $\rm \nu_{2}$ than the average

CME with ESE (I)

- $\,$ $\,$ $q_2^{\,\rm \vee 0C}$ used to select events with 30% larger or 25% smaller $\,$ $\rm \nu_{2}$ than the average
- *γ*_{αβ} contains potential CME signal as well as background effects
	- $\;$ Background contributions are suppressed at the level of $\rm\,v_{2}^{\phantom i}$
- 07/21/24 A. Dobrin Chirality 2024 11 $V_{\alpha\beta}$ depends on the event shape selection in a given centrality bin

CME with ESE (II)

ALI-PREL-550475

- v_{ab} (opp-same) can be used to study the CME
	- $\hbox{-} \quad$ Difference is positive for all centrality classes and decreases with centrality and $\hbox{\bf v}_{_2}$ (in a given centrality bin)

CME with ESE (II)

- v_{ab} (opp-same) can be used to study the CME
	- $\hbox{-} \quad$ Difference is positive for all centrality classes and decreases with centrality and $\hbox{\bf v}_{_2}$ (in a given centrality bin)
	- − $\,$ Difference approximately scales with $\rm v_{_2}$ and multiplicity \rightarrow mostly background contribution

Does magnetic field depend on $v₂$ in initial state models?

- Perform a MC Glauber simulation to evaluate the dependence of the CME signal on $v₂$
	- Parameters are tuned to ALICE results
	- Calculate magnetic field at the origin using spectators with the proper time τ=0.1 fm
- 07/21/24 A. Dobrin Chirality 2024 14 – <|B|²cos(2(Ψ_B-Ψ₂))>, the expected contribution of the CME to _{Y_{ab}, shows a strong dependence on *v*₂}

Relating data and models

• Fit _{Y_{ab} (opp-same) and <|*B*|²cos(2(Ψ_B-Ψ₂))> with a linear function to disentangle the potential CME signal} from background

$$
P_1(v_2) = p_0(1 + p_1(v_2 - \langle v_2 \rangle) / \langle v_2 \rangle)
$$

 \bullet $\;\;$ Extract the CME fraction, $f_{_{\rm CME}}$ relating the slopes of data and model fits according to

$$
f_{\rm CME}*p_{\rm 1,\,MC}+(1-f_{\rm CME})*1\!=\!p_{\rm 1,\,data}
$$

07/21/24 A. Dobrin - Chirality 2024 16 \bullet – Assumption: background contribution scales linearly with v_2 and the corresponding slope is unity

CME fraction

- CME fraction in 0–5% is currently statistically limited
- Combining the points from 5–60% gives
	- $-$ *f*_{CME} (Glauber) = 0.028 ± 0.021 → 6.4% at 95% C.L.
	- f_{CME} (T_RENTo) = 0.025 ± 0.018 \rightarrow 5.5% at 95% C.L.

"Killing" the signal using higher harmonics ALICE, JHEP 09, 160 (2020)

2-particle correlators

- Weak charge dependence, except δ_1
	- Dominated by background effects \rightarrow constrain background in $y_{1,1}$

3-particle correlators

ALICE

- $\gamma_{1,1}$ and $\gamma_{1,-3}$ sensitive to CME
- $y_{1,2}$ and $y_{2,2}$ probe only the background
- Significant charge dependence, except $y_{2,2}$
	- Increases from central to peripheral collisions

3-particle correlators

- $\gamma_{1,1}$ and $\gamma_{1,-3}$ sensitive to CME
	- $y_{1,2}$ and $y_{2,2}$ probe only the background
- Significant charge dependence, except $y_{2,2}$
	- Increases from central to peripheral collisions

 $y_{1,1}$ and $y_{1,2}$ used to estimate the background contribution to $V_{1,1}$

$$
\Delta \gamma_{1,1} \approx \kappa_2 v_2 \Delta \delta_1
$$

\n
$$
\Delta \gamma_{1,2} \approx \kappa_3 v_3 \Delta \delta_1 \longrightarrow \Delta \gamma_{1,1}^{\text{Bkg}} \approx \Delta \gamma_{1,2} \times \frac{v_2}{v_3} \frac{\kappa_2}{\kappa_3}
$$

\n
$$
\Delta \gamma_{2,2} \approx \kappa_4 v_4 \Delta \delta_2
$$

 20.002

 \blacksquare ALICE

XXX Blast wave + LCC

Sand British Crews

Existed Banks

30

 40

Centrality (%)

50

60

70

20

Recent

10

 33 AVFD (n_e /s = 0.03-0.06 - LCC = 30-60%)

Model comparisons

 (c)

 (d)

- Tune the parameters in each centrality class to reproduce *v*₂ and p_T spectra of π, K, p
- Tune the number of sources emitting balancing pairs
- Underestimates Δ γ_{1,1} by up to ≈40%
	- Disagreement increases from central to peripheral collisions
- Anomalous Viscous Fluid Dynamics (AVFD)
	- [−] EbyE IC + E/M fields (field lifetime as input)
	- Tune the parameters in each centrality class to reproduce *v*₂ and multiplicity P. Christakoglou et al., EPJC 81, 717 (2021)
	- [−] Good agreement with data points
		- Non-zero values for signal

S. Shi et al., AP 394, 50 (2018) Y. Jiang et al., CPC 42, 011001 (2018)

 $\Delta \gamma_{1,1}$ (\times 10³)

- $f_{\text{CME}}^{2.76 \text{ TeV}} = -0.021 \pm 0.045 \rightarrow 18\% \text{ at } 95\% \text{ C.L.}$
- $f_{\text{CME}^{5.02 \text{ TeV}}} = 0.003 \pm 0.029 \rightarrow 15\% \text{ at } 95\% \text{ C.L.}$ Assumption: $K_2 \approx K_3$

Varying the signal using different collision systems: Xe–Xe vs Pb–Pb collisions ALICE, PLB 856, 138862 (2024)

CME in Xe–Xe and Pb–Pb collisions

- Strong dependence on the charge
- Qualitatively similar centrality dependence
	- Larger magnitude in Xe–Xe than in Pb–Pb collisions
		- Dilution effects arising from different number of particles ($\text{CME} \sim 1/\text{M}$)
- Similar values in Xe–Xe and Pb–Pb collisions within uncertainties (vs d*N*ch/d*η*)

Model comparisons

- AI TCF
- Blast-Wave + Local Charge Conservation (LCC)
	- [−] Describes fairly well the measured data points
		- **Background dominates measurements**
		- Not observed in Pb-Pb collisions

- Anomalous Viscous Fluid Dynamics (AVFD)
	- [−] Good agreement with data points
		- Signal consistent with zero

P. Christakoglou et al., EPJC 81, 717 (2021)

S. Shi et al., AP 394, 50 (2018) Y. Jiang et al., CPC 42, 011001 (2018)

CME fraction in Xe–Xe and Pb–Pb collisions **SS**

- \bullet V_{ab} (opp-same) can be used to study CME
	- Similar values in Xe–Xe and Pb–Pb collisions (vs d*N*ch/d*η*) → large background contribution

CME fraction in Xe–Xe and Pb–Pb collisions

Xe-Xe $\sqrt{s_{NN}}$ = 5.44 TeV

Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

- v_{ab} (opp-same) can be used to study CME
	- Similar values in Xe–Xe and Pb–Pb collisions (vs d*N*ch/d*η*) → large background contribution
- CME fraction extracted using a two-component approach
	- Assumption: both signal and background scale with d*N*ch/d*η*
		- d*N_{ch}/dη* used to compensate for dilution
	- <|*B*|²cos(2(Ψ_Β-Ψ₂))> from MC simulations

 10

ALICE

 $|*n*| < 0.8$

 $0.2 < p_r < 5.0$ GeV/c

$$
\left(\frac{d N_{ch}}{d N_{ch}} d n\right)^{Xe} \Delta \gamma_{ab}^{Xe} = s B^{Xe} + b v_2^{Xe}
$$

$$
\left(\frac{d N_{ch}}{d N_{ch}} d n\right)^{Pb} \Delta \gamma_{ab}^{Pb} = s B^{Pb} + b v_2^{Pb}
$$

$$
f_{CME} = \frac{sB}{s B + b v_2}
$$

CME fraction in Xe–Xe and Pb–Pb collisions ISS

- Consistent with 0 for 0–30% and then becomes positive
- Combining the points from $0-70\%$
	- $f_{\text{CMF}}^{\text{Xe}}$ = -0.003 ± 0.010 \rightarrow 2% at 95% C.L.
	- $f_{\text{CME}}^{\text{Pb}} = 0.147 \pm 0.061 \rightarrow 25\%$ at 95% C.L.

 $f_{\rm CME}$ = *sB* $s B + b v_2$

Chiral Magnetic Wave ALICE, JHEP 12, 067 (2023)

*v*2 and *v*3 vs. *A*

*v*2 and *v*3 vs. *A*

موج
ج

*v*2 and *v*3 vs. *A*

- Finite r_n^{Norm}
- r_2 ^{Norm} consistent with r_3 ^{Norm}
	- [−] No particle type dependence
- Good agreement with CMS results and BW calculations

07/21/24 A. Dobrin - Chirality 2024 33

CMW fraction

- Δ IC approximately scales with $v_2 \rightarrow$ large background contribution
- f_{CMW} extracted by fitting Δ IC vs. v_2 with a linear function $av_2 + b$
- Combining the points from 10–60 %
	- f_{CMW} = 0.081 ± 0.055 \rightarrow 26% at 95% C.L.

07/21/24 A. Dobrin - Chirality 2024 34

 f_{CMW} *b* $a\langle v_2$ ⟩+*b*

C. Wang et al., PLB 820, 136580 (2021)

Chiral Vortical Effect

- Avoid CME ambiguity by using Λ baryon (Λ → πp)
- Significant δ and γ separation of Λ–p
	- $~\sim$ 10 times larger than CME
	- Increasing with centrality
- Close to zero δ and γ separation of Λ–h

CVE: differential analysis

 $\overline{\mathbf{S}}$

- Larger Δ*δ* and Δ*γ* for larger ∑*p*⊤
	- Larger *η* gap → small Δ*δ*
		- Non-flow contributions?
- Larger *η* gap → moderate Δ*γ*
- Constrain theoretical models

Summary

- Anomalous chiral searches performed in different collision systems
	- Background dominates the measurements
	- Different approaches used to separate the signal from the background

3-particle correlator: differential results in Xe–Xe and Pb–Pb collisions

ALICE, PLB 856, 138862 (2024)

