Anomalous transport from lattice QCD

Eduardo Garnacho Velasco

egarnacho@physik.uni-bielefeld.de

Bielefeld University

Chirality 2024, Timişoara, 25-07-2024

- ▶ Quantum anomalies $+$ $\frac{\textsf{EM} \text{ fields}}{\textsf{Vorticity}}$ \rightarrow **Anomalous transport phenomena**
- \blacktriangleright Examples:
	- Chiral Magnetic Effect (CME)
	- **n** Chiral Separation Effect (CSE)
	- **Chiral Vortical Effect (CVE)**
	- **n** Chiral Electrical Separation Effect (CESE)
	- …

Need non-perturbative methods to study effect of strong interactions: **Lattice QCD**

Lattice QCD in a nutshell

▶ QCD partition function

$$
\mathcal{Z} = \int \mathcal{D}A \mathcal{D}\bar{\psi} \mathcal{D}\psi e^{-S_E} = \int \mathcal{D}A \, \det M \, e^{-S_G}
$$

with S_E the Wick-rotated, finite temperature QCD action

$$
S_E = S_G + S_F = \int_0^{1/T} d\tau \int d^3x \left[\frac{\text{Tr } G^2}{2g^2} + \sum_f \bar{\psi}_f \underbrace{(\not{D} + m_f)}_{\equiv M} \psi_f \right]
$$

Observables

$$
\langle \mathcal{O} \rangle = \int \mathcal{D}\mathcal{U} \, \det M \, e^{-S_G} \, \mathcal{O}
$$

Lattice QCD in a nutshell

 \triangleright QCD partition function

$$
\mathcal{Z} = \int \mathcal{D}A \mathcal{D}\bar{\psi} \mathcal{D}\psi e^{-S_E} = \int \mathcal{D}A \, \det M \, e^{-S_G}
$$

with S_E the Wick-rotated, finite temperature QCD action

$$
S_E = S_G + S_F = \int_0^{1/T} d\tau \int d^3x \left[\frac{\text{Tr } G^2}{2g^2} + \sum_f \bar{\psi}_f \underbrace{(\not{D} + m_f)}_{\equiv M} \psi_f \right]
$$

 \blacktriangleright Observables

$$
\langle \mathcal{O} \rangle = \int \mathcal{D}\mathcal{U} \, \det M \, e^{-S_G} \, \mathcal{O}
$$

▶ Lattice QCD:

- Discretize space-time \rightarrow lattice spacing a
- Numerically evaluate path integral \rightarrow Monte Carlo methods
- \blacksquare Inherently in **equilibrium**

Lattice QCD in a nutshell

- ▶ Lattice $N_s^3 \times N_t$, $T = (aN_t)^{-1}$, $V = a^3 N_s^3$
- ▶ **Continuum limit**: $a \to 0$ (equiv. $N_t \to \infty$) while *V*, *T* fix

- \blacktriangleright Fermionic expectation values:
	- \blacksquare Sea quarks \rightarrow determinant
	- \blacksquare Valence quarks \rightarrow operator

$$
\langle \mathcal{O} \rangle = \int \mathcal{D}\mathcal{U} \, \frac{\det M}{\det M} \, e^{-S_G} \, \mathcal{O}
$$

▶ Quenched approximation: det $M = \text{const.}$ (exact when $m_q \to \infty$) Perturbatively: neglect virtual sea quark loops

- \blacktriangleright Fermionic expectation values:
	- \blacksquare Sea quarks \rightarrow determinant
	- \blacksquare Valence quarks \rightarrow operator

$$
\langle \mathcal{O} \rangle = \int \mathcal{D}\mathcal{U} \, \frac{\det M}{\det M} \, e^{-S_G} \, \mathcal{O}
$$

- **▶** Quenched approximation: $\det M = \text{const.}$ (exact when $m_q \to \infty$) Perturbatively: neglect virtual sea quark loops
- \triangleright Different fermion discretizations (doublers appear!):
	- Wilson: doublers are given a **cutoff dependent mass** to decouple in the continuum limit
	- Staggered: Dirac and flavor structure is **mixed with coordinate dependence** to reduce doubling problem
	- Overlap, Domain Wall, ...

[Chiral Separation Effect \(CSE\)](#page-7-0)

Conductivity

 \triangleright Magnetic field + finite density \rightarrow Axial current

$$
J_{\text{CSE}}^A = \sigma_{\text{CSE}} eB = \frac{C_{\text{CSE}}}{\rho_{\text{CSE}}} eB + \mathcal{O}(\mu^3)
$$

Free fermions \mathscr{P} [Son, Zhitnitsky '04](https://inspirehep.net/literature/650878) \mathscr{P} [Metlitski, Zhitnitsky '05](https://inspirehep.net/literature/682277):

Effect of interactions?

► Finite μ on the lattice \rightarrow Sign problem \rightarrow how to avoid it?

- **►** Finite μ on the lattice \rightarrow Sign problem \rightarrow how to avoid it?
- \triangleright Quenched QCD: Massless overlap fermions \varnothing [Puhr, Buividovich '17](https://inspirehep.net/literature/1499722) No significant corrections found to the free massless fermions result

- \triangleright Finite μ on the lattice \rightarrow Sign problem \rightarrow how to avoid it?
- \triangleright Quenched QCD: Massless overlap fermions \varnothing [Puhr, Buividovich '17](https://inspirehep.net/literature/1499722) No significant corrections found to the free massless fermions result
- \triangleright Two-color QCD: Wilson/Domain Wall $\mathscr P$ [Buividovich, Smith, von Smekal '21](https://inspirehep.net/literature/1835283) CSE suppressed at low T (remember $T = (aN_t)^{-1}$)

- \triangleright Finite μ on the lattice \rightarrow Sign problem \rightarrow how to avoid it?
- \triangleright Quenched QCD: Massless overlap fermions \varnothing [Puhr, Buividovich '17](https://inspirehep.net/literature/1499722) No significant corrections found to the free massless fermions result
- \triangleright Two-color QCD: Wilson/Domain Wall $\mathscr P$ [Buividovich, Smith, von Smekal '21](https://inspirehep.net/literature/1835283) CSE suppressed at low T (remember $T = (aN_t)^{-1}$)

$$
\mu = 0.05
$$

▶ Taylor expansion: Staggered physical point QCD $\mathscr P$ [Brandt, Endrődi, EGV, Markó '23](https://inspirehep.net/literature/2730506) 6/27

Taylor expansion

Remember $J_{\text{CSE}}^A = C_{\text{CSE}} eB\mu + \mathcal{O}(\mu^3)$

Measure derivatives of the currents:

$$
C_{\text{CSE}} eB_3 = \frac{\mathrm{d}\langle J_3^A \rangle}{\mathrm{d}\mu}\Bigr|_{\mu=0} \sim \Bigl\langle J_4^V J_3^A \Bigr\rangle_{\mu=0}
$$

Simulations at $\mu = 0 \rightarrow$ no sign problem

Numerical derivative (linear fit) w.r.t. B to obtain C_{CSE} : free fermions full QCD

▶ First full QCD result *&* [Brandt, Endrődi, EGV, Markó '23](https://inspirehep.net/literature/2730506)

[Chiral Magnetic Effect \(CME\)](#page-15-0)

I Magnetic field + chiral density \rightarrow Vector current

[Fukushima, Kharzeev, Warringa '08](https://inspirehep.net/literature/793742)

$$
J_{\text{CME}}^V = \boxed{C_{\text{CME}}} \, eB\mu_5 + \mathcal{O}(\mu_5^3)
$$

 \triangleright Now understood as out-of-equilibrium effect, for free fermions

$$
J^V_{\rm CME}(t)=\frac{1}{2\pi^2}\;eB\mu_5(t)
$$

 \blacktriangleright In-equilibrium: careful regularization needed!

 \triangleright Well known example: triangle anomaly (with massive fermions)

 \blacktriangleright Uncareful regularization:

$$
(p+q)_{\mu} \Gamma_{AVV}^{\mu\nu\rho}(p+q,p,q) = m P_5^{\nu\rho}(p,q)
$$

Regulator sensitivity: anomaly

Well known example: triangle anomaly (with massive fermions)

 \blacktriangleright Uncareful regularization:

$$
(p+q)_{\mu} \Gamma^{\mu\nu\rho}_{AVV}(p+q,p,q) = m P^{\nu\rho}_5(p,q)
$$

 $\ddot{\mathbf{c}}$

 \blacktriangleright Pauli-Villars regularization¹:

$$
(p+q)_{\mu} \Gamma_{AVV}^{\mu\nu\rho}(p+q,p,q) = m P_{5}^{\nu\rho}(p,q) + \sum_{s=1}^{3} c_{s} m_{s} P_{5,s}^{\nu\rho}(p,q)
$$

$$
\rightarrow m P_{5}^{\nu\rho}(p,q) + \frac{\epsilon^{\alpha\beta\nu\rho} q_{\alpha} p_{\beta}}{4\pi^{2}}
$$

 1 new particles c_s $(s=0,1,2,3, \ s=0$ physical fermion $m_0\equiv m)$ and $m_{s>0}\rightarrow\infty$ 10 / 27

CME regulator sensitivity

 \triangleright C_{CME} (and C_{CSE}^2) can also be written with the triangle diagram

with
$$
J_3 \sim A_3
$$
, $B_3 \sim q_1 A_2$, $\mu_5 = A_0^5$

Vanishing external momentum:

$$
C_{\text{CME}} = \lim_{p,q,p+q \to 0} \frac{1}{q_1} \Gamma_{AVV}^{023}(p+q,p,q) = \frac{1}{2\pi^2} + \sum_{s=1}^{5} \frac{c_s}{2\pi^2} = 0
$$

 \triangleright C_{CME} is zero due to anomalous contribution!

 Ω

 2 For CSE this issue is not present

Absence of CME in equilibrium

 \blacktriangleright Bloch's theorem \mathscr{P} [N. Yamamoto '15](https://inspirehep.net/literature/1343139)

Conserved currents cannot flow in equilibrium ground state

Absence of CME in equilibrium

 \blacktriangleright Bloch's theorem \mathscr{P} [N. Yamamoto '15](https://inspirehep.net/literature/1343139) Conserved currents cannot flow in equilibrium ground state

Some other approaches:

I …

- \blacktriangleright Triangle diagram \varnothing [Hou, Liu, Ren '11](https://inspirehep.net/literature/892021)
- **Dirac eigenvalues + Lattice (free overlap)** \oslash [Buividovich '14](https://inspirehep.net/literature/1268157)
- \triangleright Weyl-Wigner formalism ∂ [Zubkov '16](https://inspirehep.net/literature/1465754) ∂ [Banerjee, Lewkowicz, Zubkov '21](https://inspirehep.net/literature/1864829)
- \triangleright Vacuum polarization in background $B \nightharpoonup$ [Brandt, Endrődi, EGV, Markó '24](https://inspirehep.net/literature/2787022) $+$ Lattice (full QCD staggered)

Dynamical lattice simulations

- Simulations at finite μ_5 are possible!
- **Quenched and full QCD: Wilson**

 $C_{\text{CME}} \approx 0.025 \neq 0$? 1/(2 π^2) ≈ 0.05

 $\mathscr A$ [A. Yamamoto '11](https://inspirehep.net/literature/897763) $\mathscr A$ A. Yamamoto '11

- Non-conserved vector current! Also used in hadron spectroscopy, transport …
- Does it matter for CME?
- \blacktriangleright Now Taylor expansion in μ_5 : $J_{\text{CME}}^V = C_{\text{CME}} eB\mu_5 + \mathcal{O}(\mu_5^3)$
- \triangleright Measure derivatives of the currents:

$$
C_{\text{CME}}\,eB_3=\frac{\mathrm{d}\langle J_3^V\rangle}{\mathrm{d}\mu_5}\Big|_{\mu_5=0}\sim\left\langle J_4^A\frac{J_3^V}{J_3^V}\right\rangle_{\mu_5=0}
$$

 \blacktriangleright We can use <u>conserved</u> or <u>non-conserved</u> J_3^V

 \triangleright Direct crosscheck with $C_{\text{CME}} \neq 0$ setup!

▶ Quenched QCD (Wilson) *&* [Brandt, Endrődi, EGV, Markó '24](https://inspirehep.net/literature/2787022)

▶ Crucial to use a conserved vector current

CME in QCD

CME vanishes in equilibrium, also QCD

(full QCD staggered)

[Brandt, Endrődi, EGV, Markó '24](https://inspirehep.net/literature/2787022)

In Chiral density is finite at $\mu_5 \neq 0$

$$
\rho_5(\mu_5) = \frac{T}{V} \left. \frac{d^2 \log \mathcal{Z}}{d\mu_5^2} \right|_{\mu_5=0} \mu_5 + \mathcal{O}(\mu_5^3) = \chi_5 \mu_5 + \mathcal{O}(\mu_5^3)
$$

Indirect CME signals

 \blacktriangleright Fluctuations of chiral density and current enchanced by B

(Two-color QCD quenched overlap fermions)

[Buividovich, Chernodub, Luschevskaya, Polikarpov '09](https://inspirehep.net/literature/824829)

▶ Similar in quenched QCD

[Braguta, Buividovich, Kalaydzhyan, Kuznetsov, Polikarpov '10](https://inspirehep.net/literature/877992)

Charge separation, chirality and *B*

 \blacktriangleright Correlator of chirality and electric dipole moment proportional to B for weak fields (Two-color QCD quenched overlap fermions)

[Buividovich, Chernodub, Luschevskaya, Polikarpov '09](https://inspirehep.net/literature/831061)

 \blacktriangleright Close to topological fluctuations, local charge separation by B in the transverse plane (Full QCD staggered)

 $\mathscr O$ [Bali et al '14](https://inspirehep.net/literature/1277895)

[CME: what is next?](#page-28-0)

CME & inhomogeneous *B* field

- \triangleright So far we considered uniform *B* fields
- **ID** Magnetic fields in heavy-ion collisions are **inhomogeneous**

 $\mathscr O$ [Deng, Huang '12](https://inspirehep.net/literature/1085653)

How is CME affected?

Lattice simulation

 \blacktriangleright 1-d magnetic field profile:

 \triangleright Used to check impact in phase diagram and calculate magnetic susceptibility

[Brandt et al '23](https://inspirehep.net/literature/2663708) [Brandt, Endrődi, Markó, Valois '24](https://inspirehep.net/literature/2785280)

 \blacktriangleright Local linear response of current profile $J(x_1)$ to *homogeneous* μ_5

$$
G(x_1) \equiv \left. \frac{\mathrm{d}\langle J_3^V(x_1) \rangle}{\mathrm{d}\mu_5} \right|_{\mu_5=0}
$$

 \blacktriangleright Local linear response of current profile $J(x_1)$ to *homogeneous* μ_5

$$
G(x_1) \equiv \left. \frac{\mathrm{d}\langle J_3^V(x_1) \rangle}{\mathrm{d}\mu_5} \right|_{\mu_5=0}
$$

 \blacktriangleright Local linear response of current profile $J(x_1)$ to *homogeneous* μ_5

$$
G(x_1) \equiv \left. \frac{\mathrm{d}\langle J_3^V(x_1) \rangle}{\mathrm{d}\mu_5} \right|_{\mu_5=0}
$$

 \blacktriangleright Local linear response of current profile $J(x_1)$ to *homogeneous* μ_5

$$
G(x_1) \equiv \left. \frac{\mathrm{d}\langle J_3^V(x_1) \rangle}{\mathrm{d}\mu_5} \right|_{\mu_5=0}
$$

 \blacktriangleright Local linear response of current profile $J(x_1)$ to homogeneous μ_5

$$
G(x_1) \equiv \left. \frac{\mathrm{d}\langle J_3^V(x_1) \rangle}{\mathrm{d}\mu_5} \right|_{\mu_5=0}
$$

 \triangleright *x*₁-dependent current flowing in $x_3 \rightarrow$ integrates to zero

Non-trivial localized CME in QCD! (full QCD staggered)

[Brandt, Endrődi, EGV, Markó, Valois \(in prep.\)](https://indico.math.cnrs.fr/event/10773/contributions/11925/)

 \blacktriangleright Local linear response of current profile $J(x_1)$ to *inhomogeneous* $\mu_5(x'_1)$

Out-of-equilibrium from the lattice

Out-of-equilibrium from the lattice

▶ Spectral representation of Euclidean correlators

- On the lattice: $N_t \sim \mathcal{O}(10)$ ill-posed inverse problem
- Many methods on the market \rightarrow transport coefficients on the lattice

CME & Ohmic conductivity

 \blacktriangleright *E* · *B* generates chiral density

$$
j_{\text{CME}}^i = \sigma_{\text{CME}}^{ij} E^j
$$
, $\sigma_{\text{CME}}^{ij} = C(T, B) B^i B^j$

I CME can enhance **parallel** electric conductivity $\sigma_{\parallel} \parallel B$

- **I** Linear response to $\delta \mu_5(t)$ at finite *B*
- ► Kubo formula for $G_R(t) = i\theta(-t) \langle [j_{45}(t), j_3(0)] \rangle$

$$
C_{\text{CME}}^{\text{neq}} \sim \frac{1}{eB} \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}
$$

 \triangleright Access out-of-equilibrium C_{CME} directly! *∂* **[Banerjee, Lewkowicz, Zubkov '22](https://inspirehep.net/literature/2099976)** *∂* **[Buividovich '24](https://inspirehep.net/literature/2779401)**

Take-home messages

- \blacktriangleright Lattice QCD is a powerful tool to study the impact of strong interaction in anomalous transport
- \triangleright First determination of anomalous conductivity in QCD for CSE
- \triangleright CME in equilibrium is full of subtleties, both in the continuum and the lattice
- \triangleright Conserved currents on the lattice are crucial to study CME
- \triangleright CME vanishes in global equilibrium, also in QCD
- Future plans
	- \blacktriangleright Effect of inhomogeneous magnetic fields in anomalous transport
	- \triangleright Access out-of-equilibrium conductivities from the lattice via spectral reconstruction

Backup slides

\blacktriangleright Transport effects:

$$
\begin{pmatrix} \vec{J} \\ \vec{J}_5 \end{pmatrix} = \begin{pmatrix} \sigma_{\sf Ohm} & \sigma_{\sf CME} \\ \sigma_{\sf CESE} & \sigma_{\sf CSE} \end{pmatrix} \begin{pmatrix} \vec{E} \\ \vec{B} \end{pmatrix}
$$

 \triangleright Chiral Vortical Effect: vector/axial current generated by rotation $+$ $\mu + \mu_5$:

$$
\vec{J} = \frac{1}{\pi^2} \mu_5 \mu \vec{\omega}
$$

$$
\vec{J}_5 = \left[\frac{1}{6} T^2 + \frac{1}{2\pi^2} (\mu_5^2 + \mu^2) \right] \vec{\omega}
$$

Currents in staggered

In Staggered "gammas" (free fermions and quark chemical potential):

$$
\Gamma_{\nu}(n,m) = \frac{1}{2} \eta_{\nu}(n) [e^{a\mu \delta_{\nu,4}} \delta_{n+\hat{\nu},m} + e^{-a\mu \delta_{\nu,4}} \delta_{n-\hat{\nu},m}]
$$

$$
\Gamma_5(n,m) = \frac{1}{4!} \sum_{i,j,k,l} \epsilon_{ijkl} \Gamma_i \Gamma_j \Gamma_k \Gamma_l
$$

$$
\Gamma_{\nu 5}(n,m) = \frac{1}{3!} \sum_{i,j,k} \epsilon_{ijk} \Gamma_i \Gamma_j \Gamma_k \quad i,j,k \neq \nu
$$

 \triangleright Conserved vector current and anomalous axial current:

$$
j_{\nu}^{V} = \bar{\chi} \Gamma_{\nu} \chi
$$

$$
j_{\nu}^{A} = \bar{\chi} \Gamma_{\nu 5} \chi
$$

 \triangleright Staggered observable has a tadpole term, for example CSE

$$
\left.\frac{\mathrm{d}\left\langle J_3^A \right\rangle}{\mathrm{d}\mu} \right|_{\mu=0} \sim \left\langle J_4^V J_3^A \right\rangle_{\mu=0} + \left\langle \frac{\partial J_3^A}{\partial \mu} \right\rangle_{\mu=0}
$$

Currents in Wilson

 \blacktriangleright Local currents (don't fulfill a WI/AWI)

$$
j_{\mu}^{VL} = \bar{\psi}\gamma_{\mu}\psi
$$

$$
j_{\mu}^{AL} = \bar{\psi}\gamma_{\mu}\gamma_{5}\psi
$$

Conserved vector current and anomalous axial current:

$$
j_{\mu}^{VC}(n) = \frac{1}{2} \left[\bar{\psi}(n)(\gamma_{\mu} - r)\psi(n+\hat{\mu})) + \bar{\psi}(n)(\gamma_{\mu} + r)\psi(n-\hat{\mu})) \right]
$$

$$
j_{\mu}^{AA}(n) = \frac{1}{2} \left[\bar{\psi}(n)\gamma_{\mu}\gamma_{5}\psi(n+\hat{\mu})) + \bar{\psi}(n)\gamma_{\mu}\gamma_{5}\psi(n-\hat{\mu}) \right]
$$

 \blacktriangleright For correlators like $\left\langle J_{4}^{V}J_{3}^{A}\right\rangle$ we can use different combinations, for example $\left\langle J_{4}^{VC}J_{3}^{AA}\right\rangle$, $\left\langle J_{4}^{VL}J_{3}^{AA}\right\rangle$, ...

Results for free fermions

 \blacktriangleright Consistency check in the free case

For $m/T = 4$ (similar behavior for other m/T 's)

I Using the correct currents is **crucial**

Chirality free fermions

 μ_5 does induce chirality in our system

 $1/N_r$

Inhomogenous *B* free fermions

