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Rotation of QGP in heavy ion collisions

▶ QGP is created with non-zero angular momentum in
non-central collisions
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Rotation of QGP in heavy ion collisions

Angular velocity from STAR (Nature 548, 62 (2017))

▶ Ω = (PΛ + PΛ̄)
kBT
ℏ (Phys. Rev. C 95, 054902 (2017))

▶ Ω ∼ 10 MeV (v ∼ c at distances 10-20 fm, ∼ 9× 1021s−1)
▶ Relativistic rotation of QGP

How relativistic rotation influences QCD?
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Study of rotating QGP

▶ Our aim: study rotating QCD within lattice simulations
▶ Rotating QCD at thermodynamic equilibrium

▶ At the equilibrium the system rotates with some Ω
▶ The study is conducted in the reference frame which

rotates with QCD matter
▶ QCD in external gravitational field

▶ Boundary conditions are very important!
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Details of the simulations

▶ Gluodynamics is studied at thermodynamic equilibrium in
external gravitational field

▶ The metric tensor

gµν =


1− r2Ω2 Ωy −Ωx 0

Ωy −1 0 0
−Ωx 0 −1 0
0 0 0 −1


▶ Geometry of the system: Nt ×Nz ×Nx ×Ny = Nt ×Nz ×N2

s
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Details of the simulations

▶ Partition function (Ĥ is conserved)

Z = Tr exp
[
−βĤ

]
=

∫
DA exp

[
−SG]

▶ Euclidean action(in the cylindrical coordinates)

SG =
1

2g2

∫
d4x

[
(F a

τr)
2 + (F a

τφ̂)
2 + (F a

τz)
2 +

+(F a
rz)

2 +
(
1− (Ωr)2

)
(F a

φ̂z)
2 +

(
1− (Ωr)2

)
(F a

rφ̂)
2 +

+2irΩ(F a
rφ̂F

a
τr − F a

φ̂zF
a
τz)

]
▶ Decomposition of the action

SG = S0 + S1Ω+ S2Ω
2

S1 =
i

g2

∫
d4x r

[
F a
rφ̂F

a
τr − F a

φ̂zF
a
τz

]
S2 = − 1

2g2

∫
d4x r2

[
(F a

φ̂z)
2 + (F a

rφ̂)
2
]
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Details of the simulations

▶ Ehrenfest–Tolman effect: In gravitational field the
temperature is not constant in space at thermal
equilibrium

T (r)
√
g00 = const = 1/β

T (r)
√

1− r2Ω2 = 1/β

▶ Rotation effectively heats the system from the rotation axis to
the boundaries T (r) > T (r = 0)

▶ One could expect that rotation decreases the critical
temperature

▶ We use the designation T = T (r = 0) = 1/β

10



Details of the simulations
Boundary conditions

▶ Periodic b.c.:
▶ Ux,µ = Ux+Ni,µ

▶ Not appropriate for the field of velocities of rotating body

▶ Dirichlet b.c.:
▶ Ux,µ

∣∣
x∈Γ

= 1, Aµ

∣∣
x∈Γ

= 0
▶ Violate Z3 symmetry

▶ Neumann b.c.:
▶ Outside the volume UP = 1, Fµν = 0

▶ The dependence on boundary conditions is the property of all
approaches

▶ One can expect that boundary conditions influence our results
considerably, but their influence is restricted due to the screening
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Details of the simulations

Sign problem

SG =
1

2g2

∫
d4x

[
(F a

τr)
2 + (F a

τφ̂)
2 + (F a

τz)
2 +

+(F a
rz)

2 +
(
1− (Ωr)2

)
(F a

φ̂z)
2 +

(
1− (Ωr)2

)
(F a

rφ̂)
2 +

+2irΩ(F a
rφ̂F

a
τr − F a

φ̂zF
a
τz)

]

▶ The Euclidean action has imaginary part (sign problem)

▶ Simulations are carried out at imaginary angular velocities
Ω → iΩI

▶ The results are analytically continued to real angular velocities

▶ This approach works up to sufficiently large Ω
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EoS of rotating gluodynamics

▶ Free energy of rotating QGP

F (T,R,Ω) = F0(T,R) + C2Ω
2 + ...

▶ The moment of inertia

C2 = −1

2
I0(T,R), I0(T,Ω) = − 1

Ω

(
∂F

∂Ω

)
T,Ω→0

▶ Instead of I0(T,R) we calculate K2 = − I0(T,R)
F0(T,R)R2

▶ Sign of K2 coincides with the sign of I0(T,R)

▶ Sometimes instead of Ω2 we use v2 = (ΩR)2 and
v2I = (ΩIR)2
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EoS of rotating gluodynamics

▶ Classical moment of inertia

I0(R) =

∫
V

d3xx2
⊥ρ0(x⊥)

▶ Related to the trace of EMT Tµ
µ = ρ0(x⊥)c

2

▶ Generation of mass scale in QCD and scale anomaly

Tµ
µ ∼ ⟨G2⟩ ∼ ⟨H2 + E2⟩

▶ In QCD the gluon condensate ⟨G2⟩ ≠ 0

▶ One could anticipate: ρ0 ∼ ⟨H2 + E2⟩?
▶ I0 = Imech + Imagn valid for QCD!

Imech = ⟨J2
z ⟩ − (⟨Jz⟩)2 ∼ ⟨S1

2⟩
Imagn = 1

3

∫
d3xr2⟨H2⟩ ∼ ⟨S2⟩
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Calculation of free energy on the lattice

▶ F = −T logZ impossible to calculate on the lattice
▶ ∂F

∂β ∼ ⟨∆s(β)⟩ = s(β)T − s(β)T=0, β = 6
g2

▶ F (T )
T 4 ∼

∫ β1

β0
dβ′⟨∆s(β′)⟩
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Moment of inertia of gluon plasma

▶ I(T,R) = −F0(T,R)K2R
2

▶ I < 0 for T < 1.5Tc and I > 0 for T > 1.5Tc

▶ I < 0 is related to magnetic condensate and the scale anomaly
▶ We believe that the same is true for QCD
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Moment of inertia of gluon plasma

▶ i2 =
I0

V R2
⊥

, I0 = Imech + Imagn

Imech = ⟨J2
z ⟩ − (⟨Jz⟩)2

Imagn = 1
3

∫
d3xr2⟨H2⟩

▶ Gluon condensate: ⟨G2⟩ = ⟨E2⟩+ ⟨H2⟩
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Negative Barnett effect(?)

▶ J = I2Ω = −
(
∂F
∂Ω

)
T
, J = L+ S

▶ L ↑↑ Ω, S ↑↓ Ω might lead to J ↑↓ Ω and I2 < 0
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Inhomogeneous phase transition in QGP

▶ Ehrenfest–Tolman law

T (r) =
T0√

1− (Ωr)2
=

T0√
1 + (ΩIr)2

▶ Rotation effectively heats the system: T (r) > T (r = 0)

▶ Inhomogeneous phase: confinement in the center and
deconfinement in the periphery
(M. Chernodub, Phys. Rev. D 103, 054027 (2021))

▶ For imaginary rotation: deconfinement/confinement in the
center/periphery
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Inhomogeneous phase transition in QGP

▶ Huge lattices are required for simulations
▶ Cylindrical Symmetry is restored
▶ The results for PBC and OBC coincides in the bulk
▶ Confinement in the center and deconfinement in the periphery

In disagreement with Ehrenfest–Tolman law

▶ Inhomogeneous phase takes place below Tc 20



Inhomogeneous phase transition in QGP

▶ The phase transition is induced by rotation
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Local critical temperature Tc(r,ΩI)

▶ Our results can be well described by the formula
Tc(r,ΩI)

Tc0
= 1− κ2(ΩIr)

2 + κ4(ΩIr)
2
(
r
R

)2
+ χ4(ΩIr)

4 + ...

▶ Within the uncertainty Tc(r=0,ΩI)
Tc0

= 1

▶ Weak dependence on the simulation parameters 22



Analytical continuation to real rotation

▶ Analytical continuation Ω2
I → −Ω2:

Tc(r,Ω)
Tc0

= 1 + κ2(Ωr)
2

▶ Inhomogeneous phase can be realised for T > Tc0

▶ Deconfinement in the center and confinement in the periphery 23



Decomposition of the action

▶ Rotating action in the cylindrical coordinates

S = S0 + S1ΩI + S2Ω
2
I

▶ S1 = − 1
g2

∫
d4x r

[
F a
rφ̂F

a
τr − F a

φ̂zF
a
τz

]
▶ S2 = 1

2g2

∫
d4x r2

[
(F a

φ̂z)
2 + (F a

rφ̂)
2
]

▶ S1 is the total angular momentum and gives I > 0

▶ S2 is the centrifugal force and gives I < 0

How S1 and S2 influence on the inhomogeneous phase
transition?
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Decomposition of the action

▶ S2 is similar to the total acton and gives the dominant
contribution

▶ S1 effect is the opposite to the the total acton
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Decomposition of the action

▶ S1 increases the local critical temperature
▶ S2 decreases the local critical temperature
▶ The contribution of S2 is dominant 26



Local thermalization hypothesis

S =
1

2g2

∫
d4x

[
(F a

τr)
2 + (F a

τφ̂)
2 + (F a

τz)
2 + (F a

rz)
2 +

+
(
1− (Ωr)2

)
(F a

φ̂z)
2 +

(
1− (Ωr)2

)
(F a

rφ̂)
2 +

+2irΩ(F a
rφ̂F

a
τr − F a

φ̂zF
a
τz)

]
▶ For slow rotation Ωζ ≪ 1 the coefficients vary slowly

▶ Local thermalization approximation: study the action with the
coefficients freezed at r = r0
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Local thermalization hypothesis

▶ Good agreement with the full action for sufficiently small Ω
▶ A lot of advantages

▶ The higher order coefficients can be found
Tc(r,Ω)/Tc0 = 1 +

∑
n cn(Ωr)

2n, Tc(r = 0,Ω)/Tc0 = 1
▶ Weak dependence on the BC
▶ One can study small lattices
▶ Allows to understand inhomogeneous phase transition
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Origin of the inhomogeneous phase transition

SG =

∫
d4x

[
β
(
(F a

xτ )
2 + (F a

yτ )
2 + (F a

zτ )
2 + (F a

xz)
2
)
+

+β̃
(
(F a

yz)
2 + (F a

xy)
2
) ]

▶ Linear in Ω term can be neglected

▶ External gravitational field leads to the asymmetric action
β = 1

2g2 , β̃ = 1
2g̃2 ,

β̃
β = 1− (Ωr)2

▶ The asymmetry β̃/β is larger in the periphery region leading to
the shift of the critical temperature
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Simulation with fermions

▶ Lattice simulation with Wilson fermions
▶ Critical couplings of both transitions coincide
▶ Critical temperatures are increased
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Simulation with fermions

▶ QCD action: S = Sf (ΩF ) + Sg(ΩG)

▶ One can introduce velocities for gluons ΩG and fermions ΩF

▶ ΩF ̸= 0,ΩG = 0 decreases critical temperatures
▶ ΩF = 0,ΩG ̸= 0 increases critical temperatures
▶ The gluon sector gives the dominant contribution
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Simulation with fermions (e-Print: 2307.05755)

▶ Increase of the bulk average critical temperatures of both
transitions
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Simulation with fermions (e-Print: 2307.05755)

▶ Rotational rigidities: ρJG
= JG

ΩR2 , ρLf
=

Lf

ΩR2

▶ Spin susceptibility: ζf = s
Ω

▶ Negative moment of inertia
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Conclusion

▶ Lattice study of rotating gluodynamics and QCD have been
carried out

▶ We calculated the moment of inertia of GP. It is negative at
temperatures T < 1.5Tc and positive at larger temperatures

▶ We observed inhomogeneous phase transition in GP:
deconfinement in the central and confinement in the
periphery regions

▶ External gravitational field leads to asymmetryc action and
shift of the critical temperature in the periphery regions

▶ We believe that all observed effects remain in QCD

THANK YOU!
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