Λ - Λ (bar) Spin Correlation in Heavy-ion Collisions

8th International Workshop on Chirality, Vorticity and Magnetic Field in Quantum Matter, July 22-26, 2024, West University of Timisoara, Romania

Xin-Nian Wang CCNU/LBNL

In collaboration with Xin-li Sheng and Xiangyu Wu

Global Orbital Angular Momentum

Spins of superdeformed nuclei in low-energy nuclear collisions:

I was a Changjiang visiting professor in Shandong University 2000-2005

Zuo-tang Liang

Transverse gradient of fluid velocity & vorticity

Fluid velocity & vorticity in HIJING

No complete stopping but approximate Bjorken scaling.

Small violation of BJ scaling at large y \rightarrow local angular momentum or vorticity

BJ scaling violation and vorticity increase at lower colliding energies

Gao, Chen, Deng, Liang, Q. Wang, XNW, PRC 77 (2008)044902

Deng, Huang, *PRC* 93 (2016) 6, 064907

Global spin polarization in A+A

Spin polarization in equilibrium & CME, CVE

Dirac Eq.
$$\begin{bmatrix} \gamma^{\mu} (i\partial_{\mu} + e_{q}A_{\mu}) - m \end{bmatrix} \psi(x) = 0 \quad \stackrel{\text{Pu, Gao, Liang, Wang & XNW}}{\text{PRL 109 (2012) 232301}}$$
Spin: vorticity coupling Magnetic coupling
$$\delta E_{s} = \frac{\hbar}{2} \mathbf{n} \cdot \omega + e_{q} \hbar \frac{\mathbf{n} \cdot \mathbf{B}}{E_{p}}$$

$$\Pi = \frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}} \left[f(E_{p} - \delta E_{s}) - f(E_{p} + \delta E_{s}) \right] \approx \int \frac{d^{3}p}{(2\pi)^{3}} \delta E_{s} \frac{\partial f(E_{p})}{\partial E_{p}}$$

Polarization on the freeze-out surface:

$$rac{d\Pi^lpha(p)/d^3p}{d
ho(p)/d^3p} \;=\; rac{\hbar}{4m} rac{\int d\Sigma_\lambda p^\lambda ilde{\Omega}^{lpha\sigma} p_\sigma \, f_{
m FD}(x,p) [1-f_{
m FD}(x,p)]}{\int d\Sigma_\lambda p^\lambda \, f_{
m FD}(x,p)}.$$

Becattini & Ferroni, EJPC 52 (2007) 597, Betz, Gyulassy & Torrieri, PRC 76 (2007) 044901, Becattini, Piccinini & Rizzo, PRC 77 (2008) 024906, Beccatini, Csernai & Wang, PRC 87 (2013) 034905, Xie, Glastad & Csernai, PRC 92 (2015) 064901, Deng & Huang, arXiv 1603.06117

Spin polarization and CME, CVE

$$\left[\gamma^{\mu}(i\partial_{\mu} + e_q A_{\mu}) - m\right]\psi(x) = 0$$

Pu, Gao, Liang, Wang & XNW, PRL 109 (2012) 232301

Quantum kinetic equation

$$\psi(x) = 0$$
 $\gamma_{\mu} \left(p^{\mu} + rac{1}{2} i \nabla^{\mu}
ight) W(x, p) = 0,$
 $j^{\mu} = \int d^4 p \mathcal{V}^{\mu} = n u^{\mu} + \xi \omega^{\mu} + \xi_B B^{\mu},$
 $j^{\mu}_5 = \int d^4 p \mathcal{A}^{\mu} = n_5 u^{\mu} + \xi_5 \omega^{\mu} + \xi_{B5} B^{\mu}.$

$$\partial_{\mu}j^{\mu} = 0, \ \ \partial_{\mu}j^{\mu}_{5} = -\frac{Q^{2}}{2\pi^{2}}E \cdot B,$$

Chiral Magnetic Effect

Chiral Vorticity Effect

Kharzeev, McLerran, Warringa (2008), Fukushima, Kharzeev, Warringa (2008)

rukusiinina, Kharzeev, Warninga (2008)

Son, Surowka (2009), Kharzeev, Son (2011)

Local spin polarization

The most vortical fluid in nature

ர்

Local spin polarization

Vector meson spin alignment

Sheng, Wang and XNW, Phys. Rev. D 102, 056013 (2020)

$$P_{q(\bar{q})} \approx \frac{1}{4m_q} \epsilon^{\mu\nu\rho\sigma} \left[\omega \pm \frac{e_q}{(u \cdot p)T} F_{\rho\sigma} \right] p_{\nu}$$

Polarization via strong interaction force

Chiral quark model: Manohar and Georgi (1984)

Effective interaction between quarks, gluon and Goldstone boson between Λ_{χ} and Λ_{QCD}

$$\mathcal{L} = \bar{\psi}\gamma^{\mu}(iD_{\mu} + V_{\mu} + g_{A}A_{\mu}\gamma_{5})\psi - m\bar{\psi}\psi + \frac{1}{4}f^{2}\mathrm{tr}\partial_{\mu}\Sigma^{\dagger}\partial^{\mu}\Sigma - \frac{1}{2}\mathrm{tr}F_{\mu\nu}F^{\mu\nu} + \cdots$$

$$V_{\mu} = \frac{1}{2}(\xi^{\dagger}\partial_{\mu}\xi + \xi\partial_{\mu}\xi^{\dagger}) \qquad A_{\mu} = \frac{i}{2}(\xi^{\dagger}\partial_{\mu}\xi - \xi\partial_{\mu}\xi^{\dagger})$$

$$\xi = e^{iM/f} \qquad M = \frac{1}{\sqrt{2}}\begin{bmatrix}\sqrt{\frac{1}{2}}\pi^{0} + \sqrt{\frac{1}{6}}\eta} & \pi^{+} & K^{+}\\ \pi^{-} & -\sqrt{\frac{1}{2}}\pi^{0} + \sqrt{\frac{1}{6}}\eta} & K^{0}\\ K^{-} & \overline{K}^{0} & -\frac{2}{\sqrt{6}}\eta\end{bmatrix}$$

$$P_{q(\bar{q})}^{\mu} \approx \frac{1}{4m_{q}}\epsilon^{\mu\nu\rho\sigma} \begin{bmatrix}\omega_{\rho\sigma} \pm \frac{e_{q}}{(u \cdot p)T}F_{\rho\sigma} \pm \frac{g_{V}}{(u \cdot p)T}F_{\rho\sigma}^{V}\end{bmatrix}p_{\nu}$$
Strong interaction

Polarization via strong interaction force

Spin Boltzmann transport equation with quark coalescence

Sheng, Oliva, Liang, Wang and XNW, PRL 131, 042304 (2023)

$$\begin{aligned} k \cdot \partial_x f^V_{\lambda_1 \lambda_2}(x, \mathbf{k}) = & \frac{1}{8} \left[\epsilon^*_{\mu}(\lambda_1, \mathbf{k}) \epsilon_{\nu}(\lambda_2, \mathbf{k}) \mathcal{C}^{\mu\nu}_{\text{coal}}(x, \mathbf{k}) \right. \\ & \left. - \mathcal{C}_{\text{diss}}(\mathbf{k}) f^V_{\lambda_1 \lambda_2}(x, \mathbf{k}) \right], \end{aligned}$$

$$f_{\lambda_1\lambda_2}^V(x,\mathbf{k}) \sim \frac{1}{\mathcal{C}_{\text{diss}}(\mathbf{k})} \left[1 - e^{-\mathcal{C}_{\text{diss}}(\mathbf{k})\Delta t} \right] \epsilon_{\mu}^*(\lambda_1,\mathbf{k}) \epsilon_{\nu}(\lambda_2,\mathbf{k}) \mathcal{C}_{\text{coal}}^{\mu\nu}(x,\mathbf{k})$$

Momentum-dependence

Spin alignment on the hadronization hyper surface

$$\rho_{00} \approx \frac{1}{3} + \frac{g_{\phi}^2}{m_{\phi}^2 T_{\text{eff}}^2} (C_1 B_{\phi}^2 + C_2 E_{\phi}^2) + \cdots$$

 B^2_{ϕ}, E^2_{ϕ} rest frame \rightarrow collisions frame

Barometer of strong force field fluctuations

Sheng, Oliva, Liang, Wang and XNW, PRL 131, 042304 (2023)

Hyperon spin correlations

Simple quark model of hyperon spin $P_H^{\mu}(x,p) \approx P_s^{\mu}(x,R_sp), \ p_s = R_sp$

Hyperon spin correlation (H: Λ , Λ bar)

$$C^{\mu\nu}_{H_1H_2}(p_1, p_2) \equiv \left\langle \mathcal{P}^{\mu}_{H_1}(p_1) \mathcal{P}^{\nu}_{H_2}(p_2) \right\rangle$$

 $\langle \cdots \rangle$ average over freeze-out hypersurface

Short-distance correlation of the ϕ field

$$\begin{split} \left\langle g_{\phi}^2 F^{\phi}(x) F^{\phi}(y) / [T(x)T(y)] \right\rangle &= F^2 G(x-y) \\ G(x-y) \equiv \exp\left[-\frac{(x^0-y^0)^2}{\sigma_t^2} - \frac{(\mathbf{x}-\mathbf{y})^2}{\sigma_x^2} \right] \end{split}$$

Hyperon spin correlations

0.5

0.0

-0.5

-1.0

10

5

Pang, Petersen, Wang & XNW, PRL 117(2016) 192301

Vorticity ring:

Lisa, et al, PRC 104 (2021) 1, 011901

$$\mathcal{R} = \langle rac{ec{\omega} \cdot (\hat{t} imes ec{v})}{|\hat{t} imes v|}
angle$$

Hyperon spin correlations

$$P^{\mu}_{q(\bar{q})} \approx \frac{1}{4m_q} \epsilon^{\mu\nu\rho\sigma} \left[\omega_{\rho\sigma} \pm \frac{e_q}{(u \cdot p)T} F_{\rho\sigma} \pm \frac{g_V}{(u \cdot p)T} F^V_{\rho\sigma} \right] p_{\nu}$$

strong-field induced hyperon spin correlation

Hyperon spin correlation

Dominated by the correlation due to strong force field! Sensitive to the correlation length σ

Summary and Future perspective

Spin dynamics opens up a new window for the study of QGP matter with many unexpected phenomena

- Spin alignment of *K**: correlation of strong force field of different flavor?

- Correlation of Λ spin polarization

- Spin alignment of J/Ψ : fluctuation of gluonic field at shorter distance?

- Effect of hadronic interaction?

