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I. Abstract and motivations

* We write the equations of spin hydrodynamics in a covariant form on top of an uncharged
fluid 1n global equilibrium with a non-vanishing thermal vorticity. .

e Assuming that the spin degrees of freedom are not in equilibrium, we derive relaxation-
type equations for the components of the spin potential.

e We aim to numerically solve these equations to understand better the equilibration
timescale of spin degrees of freedom, which will help us answer the requirement of dy-
namically evolving spin equations 1n heavy-ion collisions.

I1. Covariant spin hydrodyna

 Fundaments of spin hydrodynamics for uncharged fluid are given by the conservation of
energy-momentum tensor and the angular momentum

0,T" =0, OhJM™ =0, (1)
where the angular momentum can be decomposed into the orbital and the spin part as
JMY = LMY 4 RS (2)

The orbital part is expressed as L' = T*z# in special relativity and Minkowski
coordinates x* = (t,x,y, z). However, this definition is not covariant under coordinate
transformations 1n flat space.

e Covariant formulation Since T"" 1s a proper tensor, the conservation of the energy-
momentum tensor can be covariantly written as

vV, " =0 . (3)

Furthermore, the angular-momentum conservation law 1s also a tensorial equation. Hence,
the RHS admits a covariant formulation as

AV \SM = ol (4)

Since the fluid 1s been assumed to be uncharged, the only conserved charges arise from
spacetime symmetries and conservation of the energy-momentum tensor (3).

In flat spacetime, 10 independent Killing vectors & Z exist, which are generators of the Poian-
car€ algebra: 4 generators of translations, 3 of rotations and 3 of boosts. The generators of
translations satisty V(,§,; = 0, giving rise to the conservation of energy and linear momen-
tum even if the energy-momentum 1s not symmetric. On the other hand, for the generators
of rotations, and boosts, the gradients are not symmetric. For example, let us consider the
generator of rotations around z, which we label with h = (yx),

ervr) — (0, —y,z,0) , such that V[M.SS]”) = 0,08 — 6%0;, (5)
Contracting this with the energy-momentum tensor gives rise to
K)\(yaj) _ T)\,uglu _ yT)\iL‘ . xT)\y 7 (6)
which is equal to L"%* and satisfies
v, (KW“”) +ﬁSW) —0. (7)

Motivated by this example we can define the following form of indices for A

h e {(tt), (zx), (yy), (22), (yx), (v2), (2y), (tz), (ty), (t2)} .

Theretfore the covariant definition of the orbital angular momentum 1s found by replacing
LM with
AUV AUV A 1
LM — LI = T, (8)
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I11. Ideal-spin hydrodynamics

An ideal spin fluid defined as a fluid for which, for a given energy-momentum tensor, the
evolution of spin tensor 1is fully determinated by (4)

» The number of independent components of S** must reduce to six, and can be encoded
into the antisymmetric second-rank tensor {2”

SMY = Ay QM +2 Butu QP 200 QMM A 42 Du  QUEAYR L2 EAN QY (9)

where the coefficients { A, B, C, D, E'} are functions of the fluid variables.
(I 1s the spin potential, which in equilibrium satisfies {2, = @7,,. It can be decomposed
into “electric” k* and "magnetic” w/ components as

OF = gyl + MU Wy (10)
* Kinetic theory, developed with the Wigner function formalism, 1s assumed as the under-

lying microscopic theory. According to the latter, the antisymmetic part of 1#" can be
expressed as [1]

g P (k”] + ﬁu”]) FRT WPy (wy + BQ,) +RTI™, (11)

where (), 1s the vorticity vector and I1"” the dissipative corrections.

 The rigidly rotating background is imposed by assuming a vanishing expansion and shear
tensor but keeping a non-zero thermal vorticity

ow=0, 0=0, V,8=—Pa,. (12)

Consequently, using these relations in Eq. (4) we arrive at

T (K" + a - kut) = pMky + €7, [)\,{apwg + 1 prg] —h (k"4 Ba") , (13)
T (W + a - wut) = pk, — €77u, [)\,iap/fa + Ly, Vp/ia} —h (W' + ") |

where we have defined

F+20—A—(9E0p)

.. _A-B-C .. ___E .. D .
Tk — NG ) :ul-i T R (x) 9 pli T RI'(k) )\/43 T A (%)

.. A-B-C D . E . B+C-A-D—-B(0DIB)
Tw — A (w) ’ :uw T _ﬁr(w) 9 pw T _ﬁr(w) 9 )\w T A (w) .

For a rigidly rotating background, it 1s also convenient to decompose the equations along an
orthonormal tetrad {u*, ¢, ", (*}. In the co-rotating frame, the dynamical equations for
spin can be written as

ou oF; O0F, OF,
P2 L 2 =S(V) (14)
ot  0¢p 0Op 0z
1.€., In a conservative form where
T YRe — py P8 oWy % & 0 ¢
Te YRy — My P dowy %wé [kt 0
Tk 0 k) — MWy
U= , Fg= , F,= , F.= (15)
T YW — poy P oKy P By P 0 T
T YWy — MY P 0k ek T 0
i T YW¢ ) 0 Pk R

and the sources of the primitive variables V = (ky, Ky, k¢, Wy, Wy, wg)T

Q2

—Kyp — (AP0 + plz)we

S(V) = | ¢~ (Tt )y Qoke — Ay plwy |- (16)
—Wy + (Tw + ,%)VQQOWC

2 Q)
—Wy — ()\w/YQpQO =+ :uw%)/f(f — %

—we — (T + pu) 7V Qowe — Ay P K.

V. Outlook

* Numerically solving the equations to find the timescales 7., and 7, on which the spin poten-
tial relaxes to thermal vorticity.

e Solving spin hydrodynamics in a realistic setup.




