Ideal-spin hydrodynamics on top of a rotating background

Masoud Shokri, Ashutoush Dash, David Wagner, Annamaria Chiarini, & Dirk Rischke

Goethe university

noncentral heavy-ion collisions

- hot and dense matter created in the collision with large orbital angular momentum
- \blacktriangleright a nonvanishing polarization of Λ particles

do the spin degrees of freedom evolve *dynamically* in heavy-ion collisions?

→ derive **relaxation-type equations** for spin dofs for uncharged fluid in global equilibrium with non-vanishing thermal vorticity

 \longrightarrow We need a solution of hydrodynamics to feed into the spin equations

The **spin hydrodynamics equation** for an uncharged fluid are given by the consevation laws

• Conservation of energy-momentum $\partial_{\mu}T^{\mu\nu} = 0$,

• Conservation of total angular momentum $\partial_{\lambda} J^{\lambda\mu\nu} = 0$, where $J^{\lambda\mu\nu} := L^{\lambda\mu\nu} + \hbar S^{\lambda\mu\nu}$.

Note that $L^{\lambda\mu\nu} \equiv 2T^{\lambda[\nu}x^{\mu]}!$

 \longrightarrow only valid if Minkowski coordinates $x^{\mu} = (t, x, y, z)$ are chosen in flat spacetime!

 \longrightarrow First step: covariance of spin hydrodynamic equations

Ingredients

Ideal-spin fluid

• dissipative part in $T^{\mu\nu}$

1

■ ideal spin part: 24 original dofs reduce to 6

$$S^{\lambda\mu\nu} = Au^{\lambda}\Omega^{\mu\nu} + 2Bu^{\lambda}u_{\alpha}\Omega^{\alpha[\mu}u^{\nu]} + 2Cu^{\lambda}\Omega^{\alpha[\mu}\Delta^{\nu]}{}_{\alpha} + (1)$$
$$+ 2Du_{\alpha}\Omega^{\alpha[\mu}\Delta^{\nu]\lambda} + 2E\Delta^{\lambda}{}_{\alpha}\Omega^{\alpha[\mu}u^{\nu]},$$

Underlying microscopic description: Kinetic theory

$$T^{[\mu\nu]} = -\hbar^2 \Gamma^{(\kappa)} u^{[\mu} \left(k^{\nu]} + \beta \dot{u}^{\nu]} \right) +$$

$$+ \hbar^2 \Gamma^{(\omega)} \varepsilon^{\mu\nu\rho\sigma} u_{\rho} \left(\omega_{\sigma} + \beta \Omega_{\sigma} \right) + \hbar^2 \Pi^{\mu\nu} ,$$
(2)

Rigidly rotating background

$$\sigma_{\mu\nu} = 0, \quad \theta = 0, \quad \nabla_{\mu}\beta = -\beta a_{\mu}. \tag{3}$$

* $\{A, B, C, D, E\}$ are functions of ε or, equivalently, T

* $\Omega^{\mu\nu} = u^{[\mu}\kappa^{\nu]} + \epsilon^{\mu\nu\rho\sigma}u_{\rho}\omega_{\sigma}$