Space-time dynamics of chiral magnetic currents in a hot non-Abelian plasma The 8th Conference on Chirality, Vorticity and Magnetic fields in Quantum Matter

Sebastian Grieninger, Stony Brook University

in collaboration with **Dmitri Kharzeev**, *Phys.Rev.D* 108 (2023) 12, 126004 and **Sergio Morales-Tejera**, *Phys.Rev.D* 108 (2023) 12, 126010

23/07/2024

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Chiral Magnetic Effect in QCD

- QCD vacuum has periodic structure; minima different CS #
- ► instanton/sphaleron transition between such energy-degenerate but topologically distinct vacuum sectors ⇒ change of chirality of the chiral fermions [Fukushima, Kharzeev, Warringa] [Vilenkin; '80], [Alekseev, Chaianov, Fröhlich], [Giovaninni, Shaposhnikov],...
- ► In magnetic field: Change in chirality ⇒ change of direction of momentum ⇒ Charge separation (measurable as CME)

Axial Charge

[Kharzeev; '14] Prog.Part.Nucl.Phys. 75 (2014)

- Abelian anomaly: $\partial_{\mu}J_{5}^{\mu} = C \epsilon^{\mu\nu\rho\lambda}F_{\mu\nu}F_{\rho\lambda}$
- CME current $\vec{J} = 8C \mu_5 \vec{B}$

In Heavy-ion collisions

- 1. μ_5 (and n_5) is generated dynamically and not put in by hand in form of an axial chemical potential
- 2. *n*₅ is not a conserved quantity since axial symmetry is broken explicitly by quark masses and gluonic effects
- ► Experimental observable directly linked to flucs of electric current $\cos(\Delta\phi_{\alpha}+\Delta\phi_{\beta}) \propto \frac{\alpha\beta}{N_{\alpha}N_{\beta}} (J_{\perp}^2 J_{\parallel}^2)$ [Voloshin],[Fukushima, Kharzeev, Warringa]
- Correlations of electric current sensitive to topology at large distances (at strong coupling)?

Holography as a blackbox

[Maldacena; '97], [Witten; '98], [Kovtun, Starinets; '05], [Chesler, Yaffe; '08], [Ryu, Takayanagi; '06]

Holographic Model: wish list

Dictionary		
Field Theory in $d = 3 + 1$	\Leftrightarrow	Gravity Theory in asymp. AdS ₅
finite T , temp. flucs external magnetic field	$\Leftrightarrow \Leftrightarrow \Leftrightarrow$	black hole, flucs of metric $F_{xy} = B$ in $U(1)_V$ gauge field
fluctuations electric current	\Leftrightarrow	fluctuations of vector gauge field
fluctions of axial charge n_5	\Leftrightarrow	fluctuations of axial gauge field
abelian anomaly	\Leftrightarrow	$lpha \cdot$ (CS-term+mixed CS-term)
non-abelian anomaly, top. ef	\Leftrightarrow	axial gauge field massive in bulk

Anomalous dimension

$$\dim[\langle J_5^{\mu}\rangle] = 3 + \Delta(m_s)$$

Ward identities

$$\partial_{\mu}J^{\mu} = 0, \ \partial_{\mu}J^{\mu}_{5} = m_{s}\operatorname{tr} G \wedge G + \alpha \Big(3F \wedge F + F^{(5)} \wedge F^{(5)}\Big)$$

Setup

- ▶ Background: magnetic brane i.e. anisotropy enters thermodynamics of QFT [see also talk by Matthias Kaminski] $(\langle T_{\mu}^{\ \mu} \rangle \sim B^2)$
- Consider time and space dependent fluctuations of gauge fields, scalar, and metric about this background (in Fourier space)
- ▶ $m_s = 0$: axial charge and electric current can oscillate into each other \rightarrow Chiral magnetic wave [Kharzeev, Yee; '10]
- With m_s ≠ 0: axial charge pulled into black hole → Chiral magnetic wave overdamped, finite lifetime of axial charge

► Special cases $\mathbf{k} = k_{\parallel} : \{a_t, a_z, v_t, v_z, \theta\}$, $\mathbf{k} = k_{\perp} : \{h_{yz}, a_t, a_{\perp}, v_z, \theta\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Also important: anisotropy of the background

Axial charge relaxation rate in strong B $\alpha = 0, \alpha = 1/15, \alpha = 1/10, \alpha = 6/19, \alpha = 2$ (strength of ab. anomaly)

- ▶ m_sL is fixed
- All curves behave like $\Gamma/T \sim c_1 \pm c_2 (B/T^2)^2$ initially
- Sufficiently large B, α ⇒ Abelian anomaly overpowers non-Abelian one
- Red and green curve decay as $\Gamma/T \sim c_1 c_2(T^2/B)$ at large B/T^2 .

Chern-Simons Diffusion rate

$$\frac{\mathrm{d}n_5}{\mathrm{d}t} = -2q_{\mathrm{top}} = -\frac{2\Gamma_{\mathrm{CS}}}{\chi_5 T}n_5 = -\frac{n_5}{\tau_{\mathrm{sph}}} = -\Gamma n_5$$

Chern-Simons rate increases quadratically for small B/T^2 and linearly at large B/T^2 (matches scaling of [Kharzeev, Basar; '12])

Procedure

- Prepare background: magnetic brane at finite background magnetic field, no charges
- Compute electric current two-point function as a function of k at fixed B = B e_z and ω and consider the subtracted correlator

$$\Delta G_{Jz Jz}^{\text{ret}}(\omega, \boldsymbol{k}) \equiv G_{Jz Jz}^{\text{ret}}(\omega, \boldsymbol{k}, m_s) - G_{Jz Jz}^{\text{ret}}(\omega, \boldsymbol{k}, m_s = 0),$$

which isolates the contributions coming from topological fluctuations

- Perform inverse (discrete) Fourier transform to real space
- Extend is given by root mean square

$$x_{\mathsf{rms}} = \sqrt{\frac{\int \mathrm{d}x \, x^2 \, |\Delta G_{J^z J^z}^{\mathsf{ret}}(x)|}{\int \mathrm{d}x \, |\Delta G_{J^z J^z}^{\mathsf{ret}}(x)|}}$$

Encodes the information about spatial profile of induced axial charge by topological fluctuations for a given magnetic field and time interval

Initial spatial distributions

Fix $B/T^2 = 0.22, \, \alpha = 6/19, \, m_s = 0.04, \, \tau_{5, \rm rel} = 2501/T (\Rightarrow \tau_{5, \rm rel} = 1645 \, {\rm fm})$

 \perp and \parallel with respect to B; $T = \frac{2\pi}{\omega}$ is time interval (~ inverse Fourier frequency). TT = 15.21 corresponds to T = 10 fm in dimensionful units.

Interpretation

Two peaks (black) might be the strong coupling analog of the 2 chiral fermions in weak coupling picture. Increasing length of time interval \rightarrow distributions increase in spatial extent + magnitude and the area between the two off axis peaks fills up corresponding to filling up the sphaleron shell.

Spatial distributions late times

Fix $B/T^2 = 0.22$, $\alpha = 6/19$, $m_s = 0.04$, $\tau_{5,rel} = 2501/T (\Rightarrow \tau_{5,rel} = 1645 \text{ fm})$

 \perp with respect to *B*; $T = \frac{2\pi}{\omega}$ is time interval (~ inverse Fourier frequency). TT = 15.21 corresponds to T = 10 fm in dimensionful units.

Interpretation

After reaching the axial charge relaxation time magnitude of the distributions starts to decrease while their spatial extent continues to increase. 2 peaks start appearing again in longitudinal distribution (sphaleron explosion).

Transverse and longitudinal extent

- Compare to: $\rho = 0.3$ fm [Ostrovsky, Carter, Shuryak; '02], [Shuryak, Zahed; '21]
- Only diffusive in transverse direction (exponent 1/2)
- For $k \parallel B$ ballistic behavior for sufficiently large time (linear growth)
- Size enhanced along magnetic field (no backscattering)
- Velocity: $\Delta x_{\parallel} / \Delta T = 0.08 \ll 1$

Dimensionful units

Let's put
$$T = 300$$
 MeV, $B = 1m_{\pi}^2$, $T = 10$ fm (for $m_s L = 0.04$)
 $x_{\parallel} = 1.25$ fm and $x_{\parallel} = 1.94$ fm

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のQC

Axial charge dynamics in expanding plasma

[Ammon, SG, Jimenez, Macedo, Melgar; '16], [Ghosh, SG, Landsteiner, Morales-Tejera; '21], [Cartwright, Kaminski, Schenke; '22]

[SG, Morales-Tejera; '23] $T_0 \approx 300$ MeV, $B = m_\pi^2$ (homogeneous setup)

Consider expanding black hole with bdry metric: $ds^2_{boundary} \sim -d\tau^2 + (\tau^2 d\eta^2 + dx_{\perp}^2)$

Figure: Axial charge density (left) and chiral magnetic current (right) as a function of time corresponding to $\sqrt{s} = 200 \text{ GeV}$ initial conditions. The coupling m_s increases from blue ($\Delta = 1.25 \times 10^{-7}$) to red ($\Delta = 0.3$).

Small axial charge relaxation rate, Large axial charge relaxation rate

Horizon formula for chiral magnetic current

Late time behavior of the chiral magnetic current (in Bjorken regime) for increasing values of m_s (black lines). Green dashed line:

Conclusions and Outlook

Conclusions

- Insights into spatial profile of axial charge induced by top. flucs
- Correlations of el. currents sensitive to topology at large distances
- Range grows with time: diffusive in ⊥, ballistic in || (consistent with sphaleron-like dynamics
- At large B the \perp size decreases with $1/\sqrt{B}$ (consistent with LL picture). \parallel size grows with B^3
- Shows that sphalerons are large objects even at strong coupling

Outlook

- Derive formula for CME in QCD
- Improved holographic models closer to phenomenology
- Full non-linear, 3+1 dimensional dynamics with time-dependent magnetic fields

Thank you for your attention!

(日) (日) (日) (日) (日) (日) (日) (日)

Holographic Stückelberg Model

Gravitational Action [Jimenez-Alba, Landsteiner, Melgar; '14]

$$S = \frac{1}{2 \kappa_5^2} \int_{\mathcal{M}} d^5 x \sqrt{-g} \left[R + \frac{12}{L^2} - \frac{1}{4} F^2 - \frac{1}{4} F_{(5)}^2 + \frac{m_s^2}{2} (A_m - \partial_m \theta)^2 + \frac{\alpha}{3} \epsilon^{mnk/p} (A_m - \partial_m \theta) \left(3F_{nk}F_{lp} + F_{nk}^{(5)}F_{lp}^{(5)} \right) \right] + S_{bdy} + S_{ct}$$
with $F = dV, F^{(5)} = dA$

Ward identities

$$\partial_{\mu}J^{\mu} = 0, \ \partial_{\mu}J^{\mu}_{5} = m_{s}\operatorname{tr} G \wedge G + \alpha \Big(3F \wedge F + F^{(5)} \wedge F^{(5)}\Big)$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Two contributions: non-abelian anomaly + abelian QED anomaly

CMW and axial charge dissipation

$$\partial_{\mu}J^{\mu} = 0, \quad J^{z} = \frac{\alpha \rho_{5}B}{\chi_{5}} - D \,\partial_{z}\rho; \qquad \partial_{\mu}J^{\mu}_{5} = -\Gamma\rho_{5}; J^{z}_{5} = \frac{\alpha \rho B}{\chi} - D \,\partial_{z}\rho_{5}$$

Chiral magnetic wave is gapped!

momentum gap: critical k above which propagating behavior is restored matching to hydro possible; similar idea: [Ammon, Areán, Baggioli, Gray, SG; '21] ◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Chern-Simons Diffusion rate

Coupling dependence

Chern-Simons rate increases quadratically for small B/T^2 and linearly at large B/T (matches scaling of [Kharzeev, Basar; '12])

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Axial charge relaxation rate in strong B

Coupling dependence

Axial charge relaxation rate increases for increasing mL and decreases for increasing the strength of abelian anomaly α (abelian anomaly becomes increasingly more important w.r.t. non-abelian anomaly which is held constant)

Dependence on mass/coupling

Fix $B/T^2 = 0.22$, $\alpha = 6/19$, TT = 15.21, $m_s L < \sqrt{3}$

Coupling dependence

Size decreases for increasing the coupling strength; ratio x_{\perp}/x_{\parallel} roughly independent of $m_s L$ for small $m_s L$. Note: Gap Γ has to be small for quasi-hydro to be applicable $\Rightarrow m_s L \ll 1$ for $B/T^2 < 1$.

Dependence on magnetic field (transverse)

Fix $TT \approx 15$, $\alpha = 6/19$, $m_s = 0.04$.

Observation

Size perpendicular to magnetic field drops for increasing magnetic field \Rightarrow effective 1+1 dimensional dynamics at large *B* (LLL)

A D > A P > A B > A B >

э

$$x_\perp/\mathcal{T}\sim a_1+a_2(B/T^2)^2$$
 for small B/T^2
 $x_\perp/\mathcal{T}\sim a_3+a_4T/\sqrt{B}$ for large B/T^2

Dependence on magnetic field (longitudinal)

Fix $TT \approx 15$, $\alpha = 6/19$, $m_s = 0.04$.

Observation

Significant enhancement in $x_{\parallel} \Rightarrow$ become more elongated

$$x_{\parallel}/\mathcal{T} \sim a_1 + a_2 (B/T^2)^3$$

Sphaleron size (transverse)

Fix
$$B/T^2 = 0.22$$
, $\alpha = 6/19$, $m_s = 0.04$, $x_{\perp, rms} = \sqrt{\frac{\int dx_{\perp} x_{\perp}^2 |\Delta G_{jc}^{ret}(x_{\perp}, \omega)|}{\int dx_{\perp} |\Delta G_{jc}^{ret}(x_{\perp}, \omega)|}}$

 \perp with respect to *B*; black line is relaxation time of axial charge; $T = \frac{2\pi}{\omega}$ is time interval (\sim inverse Fourier frequency)

 $x_{\perp} T \sim a_1 + a_2 \sqrt{\mathcal{T} T}$ (red dashed line)

Sphaleron size (longitudinal)

|| with respect to B; black line is relaxation time of axial charge; $T = \frac{2\pi}{\omega}$ is time interval (~ inverse Fourier frequency)

(日) (四) (日) (日) (日)

$$egin{aligned} x_{\parallel} \mathcal{T} \sim a_3 + a_4 \sqrt{\mathcal{T} \mathcal{T}} & (ext{for } \mathcal{T} \mathcal{T} ext{ small}) & (ext{red dashed line}), \ x_{\parallel} \mathcal{T} \sim a_5 + a_6 \, \mathcal{T} \mathcal{T} & (ext{for } \mathcal{T} \mathcal{T} ext{ large}) & (ext{black dashed line}). \end{aligned}$$

Horizon formula for chiral magnetic current

Left: $\langle J_{\text{CME}} \rangle / \epsilon_{\infty}^{3/4}$ (blue), $n_5 / \epsilon_{\infty}^{3/4+\Delta/4}$ (black) and $A_v(1)$ (purple). The dashed lines correspond to $m_s \approx 0$ and the solid lines to $m_s \neq 0 \Rightarrow$ Late time power laws modified (*B* decays, time-dep. CS diffusion rate)

Right: Late time behavior of the chiral magnetic current for increasing values of m_s (black lines). Green dashed line:

$$\underbrace{rac{19\,\kappa_5^2}{24\pi^2}}_{=1}\langle J_{\mathsf{CME}}
angle = rac{lpha}{3(1-\Delta)} A_{
m v}(au,1)B(au).$$