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The Chiral Magnetic Effect in QCD

[Kharzeev, Jinfeng Liao; ’21]
sfaleros (σφαλερς: ready to
fall) [Klinkhamer, Manton; ’84]

Sphaleron

Instanton

0-1 1 2
NCS

energy

▶ QCD vacuum has periodic structure; minima different CS #

▶ instanton/sphaleron transition between such energy-degenerate but
topologically distinct vacuum sectors ⇒ change of chirality of the
chiral fermions [Fukushima, Kharzeev, Warringa] [Vilenkin; ’80], [Alekseev, Chaianov,

Fröhlich], [Giovaninni, Shaposhnikov],...

▶ In magnetic field: Change in chirality ⇒ change of direction of
momentum ⇒ Charge separation (measurable as CME)



Axial Charge
[Kharzeev; ’14] Prog.Part.Nucl.Phys. 75 (2014)

▶ Abelian anomaly:
∂µJ

µ
5 = C ϵµνρλFµνFρλ

▶ CME current
J⃗ = 8C µ5 B⃗

In Heavy-ion collisions

1. µ5 (and n5) is generated dynamically and not put in by hand
in form of an axial chemical potential

2. n5 is not a conserved quantity since axial symmetry is broken
explicitly by quark masses and gluonic effects

▶ Experimental observable directly linked to flucs of electric current

cos(∆ϕα+∆ϕβ) ∝
αβ

NαNβ

(
J2⊥−J2∥

)
[Voloshin],[Fukushima, Kharzeev, Warringa]

▶ Correlations of electric current sensitive to topology at large
distances (at strong coupling)?



Holography as a blackbox

d dim Quantum field theory ⇔ Quantum Gravity in AdSd+1

large N limit ⇔ classical gravity
equilibrium state at finite T & ρ ⇔ black hole with T & ρ
linear response G ret ⇔ QNMs of black hole
real-time non-equilibrium dynamics ⇔ time-dependent gravity
Entanglement entropy ⇔ Area of minimal surface

[Maldacena; ’97], [Witten; ’98], [Kovtun, Starinets; ’05], [Chesler, Yaffe; ’08], [Ryu, Takayanagi; ’06]



Holographic Model: wish list

Dictionary

Field Theory in d = 3 + 1 ⇔ Gravity Theory in asymp. AdS5

finite T , temp. flucs ⇔ black hole, flucs of metric
external magnetic field ⇔ Fxy = B in U(1)V gauge field

fluctuations electric current ⇔ fluctuations of vector gauge field

fluctions of axial charge n5 ⇔ fluctuations of axial gauge field

abelian anomaly ⇔ α· (CS-term+mixed CS-term)

non-abelian anomaly, top. ef ⇔ axial gauge field massive in bulk

Anomalous dimension

dim[⟨Jµ5 ⟩] = 3+∆(ms)

Ward identities

∂µJ
µ = 0, ∂µJ

µ
5 = ms trG ∧ G + α

(
3F ∧ F + F (5) ∧ F (5)

)



Setup
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▶ Background: magnetic brane i.e. anisotropy enters thermodynamics
of QFT [see also talk by Matthias Kaminski] (⟨T µ

µ ⟩ ∼ B2)

▶ Consider time and space dependent fluctuations of gauge fields,
scalar, and metric about this background (in Fourier space)

▶ ms = 0: axial charge and electric current can oscillate into each
other → Chiral magnetic wave [Kharzeev, Yee; ’10]

▶ With ms ̸= 0: axial charge pulled into black hole → Chiral
magnetic wave overdamped, finite lifetime of axial charge

▶ Special cases k = k∥ : {at , az , vt , vz , θ}, k = k⊥ : {hyz , at , a⊥, vz , θ}
▶ Also important: anisotropy of the background



Axial charge relaxation rate in strong B
α = 0, α = 1/15, α = 1/10, α = 6/19, α = 2 (strength of ab. anomaly)














           

            









            
























            

50 100 150 200

B

T2

0.001

0.002

0.003

0.004

0.005

Γ

T

▶ msL is fixed

▶ All curves behave like
Γ/T ∼ c1 ± c2(B/T

2)2

initially

▶ sufficiently large B, α ⇒
Abelian anomaly overpowers
non-Abelian one

▶ Red and green curve decay as
Γ/T ∼ c1 − c2(T

2/B) at
large B/T 2.

Chern-Simons Diffusion rate

dn5
dt

= −2qtop = −2ΓCS
χ5 T

n5 = − n5
τsph

= −Γn5

Chern-Simons rate increases quadratically for small B/T 2 and linearly at
large B/T 2 (matches scaling of [Kharzeev, Basar; ’12])



Procedure

▶ Prepare background: magnetic brane at finite background magnetic
field, no charges

▶ Compute electric current two-point function as a function of k at
fixed B = B ez and ω and consider the subtracted correlator

∆G ret
JzJz (ω, k) ≡ G ret

JzJz (ω, k ,ms)− G ret
JzJz (ω, k ,ms = 0),

which isolates the contributions coming from topological fluctuations

▶ Perform inverse (discrete) Fourier transform to real space

▶ Extend is given by root mean square

xrms =

√∫
dx x2 |∆G ret

JzJz (x)|∫
dx |∆G ret

JzJz (x)|

▶ Encodes the information about spatial profile of induced axial charge
by topological fluctuations for a given magnetic field and time
interval



Initial spatial distributions
Fix B/T 2 = 0.22, α = 6/19, ms = 0.04, τ5,rel = 2501/T (⇒ τ5,rel = 1645 fm)
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⊥ and ∥ with respect to B; T = 2π
ω is time interval (∼ inverse Fourier

frequency). T T = 15.21 corresponds to T = 10 fm in dimensionful units.

Interpretation

Two peaks (black) might be the strong coupling analog of the 2
chiral fermions in weak coupling picture. Increasing length of time
interval → distributions increase in spatial extent + magnitude and
the area between the two off axis peaks fills up corresponding to
filling up the sphaleron shell.



Spatial distributions late times
Fix B/T 2 = 0.22, α = 6/19, ms = 0.04, τ5,rel = 2501/T (⇒ τ5,rel = 1645 fm)
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⊥ with respect to B; T = 2π
ω is time interval (∼ inverse Fourier

frequency). T T = 15.21 corresponds to T = 10 fm in dimensionful units.

Interpretation

After reaching the axial charge relaxation time magnitude of the
distributions starts to decrease while their spatial extent continues
to increase. 2 peaks start appearing again in longitudinal distribu-
tion (sphaleron explosion).



Transverse and longitudinal extent
Reminder: x⊥,rms =

√ ∫
dx⊥ x2⊥ |∆G ret

Jz Jz
(x⊥,ω)|∫

dx⊥ |∆G ret
Jz Jz

(x⊥,ω)| ; black line is τrel of axial charge
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▶ Compare to: ρ = 0.3 fm [Ostrovsky, Carter, Shuryak; ’02], [Shuryak, Zahed; ’21]

▶ Only diffusive in transverse direction (exponent 1/2)

▶ For k∥B ballistic behavior for sufficiently large time (linear growth)

▶ Size enhanced along magnetic field (no backscattering)

▶ Velocity: ∆x∥/∆T = 0.08 ≪ 1

Dimensionful units

Let’s put T = 300MeV, B = 1m2
π, T = 10 fm (for msL = 0.04)

x⊥ = 1.25 fm and x∥ = 1.94 fm



Axial charge dynamics in expanding plasma

[Ammon, SG, Jimenez, Macedo, Melgar; ’16], [Ghosh, SG, Landsteiner, Morales-Tejera; ’21],

[Cartwright, Kaminski, Schenke; ’22]

[SG, Morales-Tejera; ’23] T0 ≈ 300 MeV, B = m2
π (homogeneous setup)

Consider expanding black hole with bdry metric: ds2boundary ∼ −dτ2 + (τ2dη2+ dx2⊥)
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Figure: Axial charge density (left) and chiral magnetic current (right) as a
function of time corresponding to

√
s = 200GeV initial conditions. The

coupling ms increases from blue (∆ = 1.25× 10−7) to red (∆ = 0.3).

Small axial charge relaxation rate, Large axial charge relaxation rate



Horizon formula for chiral magnetic current
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Late time behavior of the chiral magnetic current (in Bjorken regime) for
increasing values of ms (black lines). Green dashed line:

Chiral magnetic current

19κ2
5

24π2︸ ︷︷ ︸
=1

⟨JCME⟩ =
α

3(1−∆)
Av (τ, 1)B(τ).



Conclusions and Outlook

Conclusions

▶ Insights into spatial profile of axial charge induced by top. flucs

▶ Correlations of el. currents sensitive to topology at large distances

▶ Range grows with time: diffusive in ⊥, ballistic in ∥ (consistent
with sphaleron-like dynamics

▶ At large B the ⊥ size decreases with 1/
√
B (consistent with LL

picture). ∥ size grows with B3

▶ Shows that sphalerons are large objects even at strong coupling

Outlook

▶ Derive formula for CME in QCD

▶ Improved holographic models closer to phenomenology

▶ Full non-linear, 3+1 dimensional dynamics with time-dependent
magnetic fields

Thank you for your attention!



Holographic Stückelberg Model

Gravitational Action [Jimenez-Alba, Landsteiner, Melgar; ’14]

S =
1

2κ2
5

∫
M

d5x
√
−g

[
R +

12

L2
− 1

4
F 2 − 1

4
F 2
(5) +

m2
s

2
(Am − ∂mθ)

2

+
α

3
ϵmnklp(Am − ∂mθ)

(
3FnkFlp + F

(5)
nk F

(5)
lp

)]
+ Sbdy + Sct

with F = dV , F (5) = dA

Ward identities

∂µJ
µ = 0, ∂µJ

µ
5 = ms trG ∧ G + α

(
3F ∧ F + F (5) ∧ F (5)

)
Two contributions: non-abelian anomaly + abelian QED anomaly



CMW and axial charge dissipation

∂µJ
µ = 0, Jz =

αρ5B

χ5
−D ∂zρ; ∂µJ

µ
5 = −Γρ5; J

z
5 =

αρB

χ
−D ∂zρ5

Chiral magnetic wave is gapped!

ω± = − iΓ

2
− iDk2 ±

√
B2k2α2

χ5χ
− Γ2

4
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momentum gap: critical k above which propagating behavior is restored
matching to hydro possible; similar idea: [Ammon, Areán, Baggioli, Gray, SG; ’21]



Chern-Simons Diffusion rate

α = 0 ≡ α0, α = 6/19≡ α1, α = 2

50 100 150 200

B

T2

2

4

6

8

ΓCS

ΓCS,0

T0
4+2Δ

T4+2Δ

50 100 150 200

B

T2

0.05

0.10

0.15

0.20

Γ
˜
CS

Coupling dependence

Chern-Simons rate increases quadratically for small B/T 2 and lin-
early at large B/T (matches scaling of [Kharzeev, Basar; ’12])



Axial charge relaxation rate in strong B
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Coupling dependence

Axial charge relaxation rate increases for increasing mL and de-
creases for increasing the strength of abelian anomaly α (abelian
anomaly becomes increasingly more important w.r.t. non-abelian
anomaly which is held constant)



Dependence on mass/coupling

Fix B/T 2 = 0.22, α = 6/19, TT = 15.21, msL <
√
3
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x∥,⊥T ∼ a∥,⊥ + b∥,⊥ (ms L)
2 (red dashed);

x∥(
√
3)

x∥(0)
= 0.83; x⊥(

√
3)

x⊥(0) = 0.70.

Coupling dependence

Size decreases for increasing the coupling strength; ratio x⊥/x∥
roughly independent of msL for small msL.
Note: Gap Γ has to be small for quasi-hydro to be applicable ⇒
msL ≪ 1 for B/T 2 < 1.



Dependence on magnetic field (transverse)

Fix T T ≈ 15, α = 6/19, ms = 0.04.
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Observation

Size perpendicular to magnetic field drops for increasing magnetic
field ⇒ effective 1+1 dimensional dynamics at large B (LLL)

x⊥/T ∼ a1 + a2(B/T
2)2 for small B/T 2

x⊥/T ∼ a3 + a4T/
√
B for large B/T 2



Dependence on magnetic field (longitudinal)

Fix T T ≈ 15, α = 6/19, ms = 0.04.
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Observation

Significant enhancement in x∥ ⇒ become more elongated

x∥/T ∼ a1 + a2(B/T
2)3



Sphaleron size (transverse)

Fix B/T 2 = 0.22, α = 6/19, ms = 0.04, x⊥,rms =

√ ∫
dx⊥ x2

⊥ |∆G ret
Jz Jz

(x⊥,ω)|∫
dx⊥ |∆G ret

Jz Jz
(x⊥,ω)|
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⊥ with respect to B; black line is relaxation time of axial charge; T = 2π
ω

is time interval (∼ inverse Fourier frequency)

x⊥T ∼ a1 + a2
√
T T (red dashed line)



Sphaleron size (longitudinal)

Fix B/T 2 = 0.22, α = 6/19, ms = 0.04.
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∥ with respect to B; black line is relaxation time of axial charge; T = 2π
ω

is time interval (∼ inverse Fourier frequency)

x∥T ∼ a3 + a4
√
T T (for T T small) (red dashed line),

x∥T ∼ a5 + a6 T T (for T T large) (black dashed line).



Horizon formula for chiral magnetic current
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Left: ⟨JCME⟩/ϵ3/4∞ (blue), n5/ϵ
3/4+∆/4
∞ (black) and Av (1) (purple). The

dashed lines correspond to ms ≈ 0 and the solid lines to ms ̸= 0 ⇒ Late
time power laws modified (B decays, time-dep. CS diffusion rate)

Right: Late time behavior of the chiral magnetic current for increasing
values of ms (black lines). Green dashed line:

19κ2
5

24π2︸ ︷︷ ︸
=1

⟨JCME⟩ =
α

3(1−∆)
Av (τ, 1)B(τ).
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