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The Chiral Magnetic Effect in QCD
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Sphaleron

Instanton

» QCD vacuum has periodic structure; minima different CS #

» instanton/sphaleron transition between such energy-degenerate but
topologically distinct vacuum sectors = change of chirality of the
chiral fermions [Fukushima, Kharzeev, Warringa] [Vilenkin; '80], [Alekseev, Chaianov,
Frohlich], [Giovaninni, Shaposhnikov],...

» In magnetic field: Change in chirality = change of direction of
momentum = Charge separation (measurable as CME)



Axial Charge

[Kharzeev; '14] Prog.Part.Nucl.Phys. 75 (2014)
» Abelian anomaly:

e /T q 6 J# = CG#UPAFMVFPA
G@ > CME current
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In Heavy-ion collisions

1. ps (and ns) is generated dynamically and not put in by hand
in form of an axial chemical potential

2. ns is not a conserved quantity since axial symmetry is broken
explicitly by quark masses and gluonic effects

» Experimental observable directly linked to flucs of electric current

COS(A¢Q+A¢5) ﬂ (JL JH)[Voloshm] [Fukushima, Kharzeev, Warringa]

»> Correlations of electrlc current sensitive to topology at large
distances (at strong coupling)?



Holography as a blackbox

d dim Quantum field theory < Quantum Gravity in AdSg41

Horizon

Extra dimension
large N limit & classical gravity
equilibrium state at finite T & p & black hole with T & p
linear response G"™t < QNMs of black hole
real-time non-equilibrium dynamics < time-dependent gravity
Entanglement entropy < Area of minimal surface

[Maldacena; '97], [Witten; '98], [Kovtun, Starinets; '05], [Chesler, Yaffe; '08], [Ryu, Takayanagi; '06]



Holographic Model: wish list

Dictionary

Field Theory in d =3

+1 Gravity Theory in asymp. AdSs

finite T, temp. flucs

abelian anomaly

external magnetic field
fluctuations electric current

fluctions of axial charge ns

non-abelian anomaly, top. ef

black hole, flucs of metric

F.y = B in U(1)v gauge field
fluctuations of vector gauge field
fluctuations of axial gauge field
a- (CS-term+mixed CS-term)

axial gauge field massive in bulk

to o0 |

Anomalous dimension

dim[(J5")] = 3+A(m)

Ward identities

But* =0, Bt = mtrG A G+ a3F A F + FO A FO))




Setup

Re(wm) < Im(wim)

» Background: magnetic brane i.e. anisotropy enters thermodynamics
of QFT [see also talk by Matthias Kaminski] ({T,*) ~ B?)

» Consider time and space dependent fluctuations of gauge fields,
scalar, and metric about this background (in Fourier space)

» m, = 0: axial charge and electric current can oscillate into each
other — Chiral magnetic wave [Kharzeev, Yee; '10]

» With ms # 0: axial charge pulled into black hole — Chiral
magnetic wave overdamped, finite lifetime of axial charge

> SpeCial cases k = k” : {at? az, Vi, Vzaa}r k - kL . {hyZ7ata aj, VZ70}
» Also important: anisotropy of the background



Axial charge relaxation rate in strong B
a=0,a=1/15 a=1/10, a = 6/19, a = 2 (strength of ab. anomaly)

r » m.L is fixed
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Chern-Simons rate increases quadratically for small B/ T2 and linearly at
large B/ T2 (matches scaling of [Kharzeev, Basar; '12])



Procedure

>

>

Prepare background: magnetic brane at finite background magnetic
field, no charges

Compute electric current two-point function as a function of k at
fixed B = B e, and w and consider the subtracted correlator

[ AGT (w, k) = G (w, k, ms) — G4 (w, k, my = 0), ]

which isolates the contributions coming from topological fluctuations
Perform inverse (discrete) Fourier transform to real space

Extend is given by root mean square

L \/fdxxz AGE (x)

Jax[AGE ()]

Encodes the information about spatial profile of induced axial charge
by topological fluctuations for a given magnetic field and time
interval



Initial spatial distributions

Fix B/T?=0.22, a = 6/19, m. —
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1 and || with respect to B; T = 2T is time interval (~ inverse Fourier
frequency). 7T = 15.21 corresponds to 7 = 10 fm in dimensionful units.

Interpretation

Two peaks (black) might be the strong coupling analog of the 2
chiral fermions in weak coupling picture. Increasing length of time
interval — distributions increase in spatial extent + magnitude and
the area between the two off axis peaks fills up corresponding to
filling up the sphaleron shell.




Spatial distributions late times

Fix B/T2 =0.22, « = 6/19, m. = 0.04, 75 1 = 2501/ T (= 75,re = 1645 fm)
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L with respect to B; T = %77 is time interval (~ inverse Fourier
frequency). 7 T = 15.21 corresponds to 7 = 10 fm in dimensionful units.

Interpretation

After reaching the axial charge relaxation time magnitude of the
distributions starts to decrease while their spatial extent continues
to increase. 2 peaks start appearing again in longitudinal distribu-

tion (sphaleron explosion).




Transverse and longitudinal extent
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» Compare to: p = 0.3 fm [Ostrovsky, Carter, Shuryak; '02], [Shuryak, Zahed; '21]
» Only diffusive in transverse direction (exponent 1/2)
» For k|| B ballistic behavior for sufficiently large time (linear growth)
» Size enhanced along magnetic field (no backscattering)
> Velocity: Ax)/AT =0.08 <1

Dimensionful units

Let's put T =300MeV, B = 1m2, T = 10fm (for msL = 0.04)
x; = 1.25fm and x| = 1.94fm




Axial charge dynamics in expanding plasma

[Ammon, SG, Jimenez, Macedo, Melgar; '16], [Ghosh, SG, Landsteiner, Morales-Tejera; '21],
[Cartwright, Kaminski, Schenke; '22]

[SG, Morales-Tejera; '23] Top &= 300 MeV, B = mfr (homogeneous setup)

Consider expanding black hole with bdry metric: ds§oundary ~ —d7r? + (T2dn*+ dxi)
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Figure: Axial charge density (left) and chiral magnetic current (right) as a
function of time corresponding to /s = 200 GeV initial conditions. The

coupling m; increases from blue (A = 1.25 x 1077) to red (A = 0.3).

Small axial charge relaxation rate, Large axial charge relaxation rate



Horizon formula for chiral magnetic current
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Late time behavior of the chiral magnetic current (in Bjorken regime) for
increasing values of ms (black lines). Green dashed line:

Chiral magnetic current




Conclusions and Outlook

Conclusions

» Insights into spatial profile of axial charge induced by top. flucs
» Correlations of el. currents sensitive to topology at large distances

» Range grows with time: diffusive in L, ballistic in || (consistent
with sphaleron-like dynamics

> At large B the L size decreases with 1/v/B (consistent with LL
picture). || size grows with B*

» Shows that sphalerons are large objects even at strong coupling

» Derive formula for CME in QCD

» Improved holographic models closer to phenomenology

» Full non-linear, 341 dimensional dynamics with time-dependent
magnetic fields

Thank you for your attention!



Holographic Stiickelberg Model

Gravitational Action

1 1., 1 m?
—— | &=z |R ———F2——F2 25
S 2,{;/ X [ + O R

(e
+ 5™ Ay — On8) (3FuFip + Fig Fiy) ) | + Soay + S

(Am — Omb)?

with F =dV, F®) = dA

But* =0, Bl = mtrG A G+ a3F A F + FO A FO))

Two contributions: non-abelian anomaly + abelian QED anomaly



CMW and axial charge dissipation
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Chiral magnetic wave is gapped!
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momentum gap: critical k above which propagating behavior is restored
matching to hydro possible; similar idea: [Ammon, Aredn, Baggioli, Gray, SG; '21]



Chern-Simons Diffusion rate

a=0=ap, a=6/19= a1, a =2

Mg To*2A
rCS,O T4+2A fcs
8 0.20
6 L 0.15
4 0.10
2 0.05
o E " E
50 100 150 200 T? 50 100 150 200 T2

Coupling dependence

Chern-Simons rate increases quadratically for small B/ T2 and lin-
early at large B/ T (matches scaling of [Kharzeev, Basar; '12])




Axial charge relaxation rate in strong B
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Coupling dependence

Axial charge relaxation rate increases for increasing mL and de-
creases for increasing the strength of abelian anomaly « (abelian
anomaly becomes increasingly more important w.r.t. non-abelian

anomaly which is held constant)




Dependence on mass/coupling

Fix B/T?=0.22, a =6/19, TT = 15.21, msL < /3
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Coupling dependence

Size decreases for increasing the coupling strength; ratio x /x|
roughly independent of mgL for small mgL.
Note: Gap I' has to be small for quasi-hydro to be applicable =

msL < 1for B/T? < 1.




Dependence on magnetic field (transverse)

Fix 7T ~ 15, a = 6/19, m, = 0.04.
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Observation

Size perpendicular to magnetic field drops for increasing magnetic
field = effective 1+1 dimensional dynamics at large B (LLL)

x [T ~ a1+ «32(3/7-2)2 for small B/T2
x1 /T ~ a3+ asT/v/B for large B/ T?



Dependence on magnetic field (longitudinal)

Fix TT ~ 15, a = 6/19, m, = 0.04.
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Observation

Significant enhancement in x| = become more elongated

X /T ~ a1+ ax(B/T?)3



Sphaleron size (transverse)

JSdx XF |AGH (xu,w)|

Fix B/T2 =0.22, a = 6/19, ms = 0.04, X_ms = [ * T tacs )
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Sphaleron size (longitudinal)

Fix B/T2 =0.22, o = 6/19, m, = 0.04.

x T
50 -
o -
40 L
-
o
30
7
e
-

20 o

-

,—"'
&
10/'
T
500 1000 1500 T

|| with respect to B; black line is relaxation time of axial charge; T = 2%
is time interval (~ inverse Fourier frequency)

x| T ~as+asVTT (for TT small) (red dashed line),
x| T ~as+asTT (for TT large) (black dashed line).



Horizon formula for chiral magnetic current
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Left: <JCME>/62</>4 (blue), n5/egé4+A/4 (black) and A, (1) (purple). The
dashed lines correspond to mg =~ 0 and the solid lines to ms; # 0 = Late
time power laws modified (B decays, time-dep. CS diffusion rate)

Right: Late time behavior of the chiral magnetic current for increasing
values of my (black lines). Green dashed line:
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