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QCD phase transition

The Hot QCD White Paper (2015) 

Ω ~ 0.01 − 0.1 𝐺𝑒𝑉

Chiral condensate < 𝝍𝝍 >

QGP phase < 𝝍𝝍 >=0

Hadronic Phase < 𝝍𝝍 >=finite

neutron star
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QCD under rotation

Braguta V V, Kotov A Y, Kuznedelev D D, et al. arXiv:2110.12302, 2021. Y. Jiang and J. Liao, Phys. Rev. Lett. 117, 192302 (2016) arXiv:1606.03808 

Ji-Chong Yang and Xu-Guang Huang arxiv:2307.05755 HL Chen, ZB Zhu, XG Huang arXiv:2306.08362   
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The properties under 
rotation remain unclear.

The lattice and model 
calculations yield 
opposite results!



QCD phase transition
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Recently, we have also been paying 
attention to QCD phase transitions under 
other conditions such as magnetic field, 
electric field.

What about the effective under acceleration?

H. L. Chen, K. Fukushima, X. G. Huang and K. Mameda, Phys. Rev. D 93, 104052 (2016)
Cao, G., & Huang, X. G. (2016). Physics Letters B, 757, 1-5. 

𝐼2 = 𝐸 ⋅ 𝐵



02Uniform acceleration in relativity case 

𝒗 𝒕 =
𝒂𝒕

𝟏 + 𝒂𝟐𝒕𝟐
,

𝒛 𝒕 = 𝒂−𝟏 𝟏 + 𝒂𝟐𝒕𝟐 − 𝟏

𝒂 =
𝒅

𝒅𝒕

𝒗

𝟏 − 𝒗𝟐
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The equation of motion for a uniform acceleration 
particle: 

The trajectory is hyperbola in Minkowski coordinates : 

𝒛 +
𝟏

𝒂

𝟐

− 𝒕𝟐 =
𝟏

𝒂𝟐

Taken from Kharzeev D, Tuchin K. Nuclear 
Physics A, 2005, 753(3-4): 316-334.

𝑎 → 0
𝑣 𝑡 = 𝑎𝑡

𝒂 is called proper acceleration



02Rindler spacetime 

Coordinates transformation :

Minkowski coordinates (T,X,Y,Z)

Rindler coordinates (t,x,y,z)

The world line in Rindler coordinates: 𝑥 =
1

𝑎
, 𝑡 = 𝜏

𝑇 = 𝑥 sinh 𝑎𝜏 , 𝑋 = 𝑥𝑐𝑜𝑠ℎ(𝑎𝜏)The world line in Minkowski coordinates:

𝒅𝒔𝟐 = − 𝒂𝒙 𝟐𝒅𝒕𝟐 + 𝒅𝒙𝟐 + 𝒅𝒚𝟐 + 𝒅𝒛𝟐

𝑇 = 𝑥 sinh 𝑎𝑡  , 𝑋 = 𝑥𝑐𝑜𝑠ℎ 𝑎𝑡 , 𝑌 = 𝑦, 𝑍 = 𝑧
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02Rindler spacetime 

Kottler-Moller coordinates: Radar coordinates:
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Unruh effect

The Hawking–Unruh effect predicts that the accelerated observer sees Minkowski vacuum 
state as a thermal bath of particles with temperature 𝑇 = 𝑎/2𝜋.
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Define the annihilation and creation
operator in acceleration frame: 𝑎𝑅(𝜔)and 

𝑎𝑅
†(𝜔)

We have 𝑎𝑅| ۧ0 𝑅=0, where | ۧ0 𝑅 is Rindler vacuum

According to the Unruh effect we have

𝑀0ۦ|𝑎𝑅𝑎𝑅
† | ۧ0 𝑀~ 𝑒𝑥𝑝

2𝜋𝜔

𝑎
± 1

−1

The most famous effect induced by acceleration is Unruh effect.



Unruh effect in heavy ion 
collisions

According to Dmitri work[1], the Unruh effect under strong color fields should be observable.

[1] Kharzeev D, Tuchin K. From color glass condensate to quark–gluon plasma through the 

event horizon[J]. Nuclear Physics A, 2005, 753(3-4): 316-334.

As color glass condensate picture say that the strength of the color-electric field 
𝐸~𝑄𝑠

2/𝑔 , where 𝑸𝒔 is the saturation scale and g is the strong coupling and the  typical 

acceleration is 𝑎~𝑄𝑆~1𝐺𝑒𝑉 (𝑇 =
𝑎

2𝜋
~200𝑀𝑒𝑉 > 𝑇𝑐 ≅ 150𝑀𝑒𝑉)

Acceleration will provide a temperature 𝑻 = 𝒂/𝟐𝝅. Temperature will surely effect the QCD 
phase transition 
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So is this important in heavy-ion collisions?



02Motivation

▪ Unruh effect may play an important role in QCD phase transition.

▪ QCD under rotation have attracted many attention.

▪ There are many interesting phenomena in the presence of parallel electromagnetic filed, 
which can be easily analogous to acceleration and rotation.

▪ The above points give us an academic interest to discuss QCD phase transition under both 
acceleration and rotation.



02About this work

▪ We introduce the effects of acceleration and rotation through an accelerated-rotated 
spacetime background.

▪ We employ the Nambu-Jona-Lasinio model in an accelerated-rotated spacetime and 
apply the mean-field approximation.

▪ We solve the gap equation both numerically and analytically and work out the chiral 
condensate as a function of rotation and acceleration.

▪ Most of the results were obtained in 𝑻 = 𝑻𝑼.



02NJL model in general spacetime

𝓛𝑵𝑱𝑳 = ഥ𝝍 𝒊𝜸𝝁𝛁𝝁 −𝒎𝟎 𝝍+
𝑮

𝟐
൬ഥ𝝍𝝍 )𝟐 + ഥ𝝍𝒊𝜸𝟓𝝍

𝟐

𝑔𝜇𝜈𝑔
𝜈𝜌 = 𝛿𝜇

𝜌
, 𝑔𝜇𝜈(𝑥) = 𝑒 ෝ𝑚

𝜇
(𝑥)𝑒𝜈 ෝ𝑚(𝑥), 𝛾𝜇(𝑥) = 𝑒𝜇

ෝ𝑚(𝑥)𝛾 ෝ𝑚.

𝑔𝜇𝜈 =

൫1 + 𝑎𝑧 )2 − 𝜔2𝑟2 𝜔𝑦 −𝜔𝑥 0

𝜔𝑦 −1 0 0
−𝜔𝑥 0 −1 0
0 0 0 −1𝛾𝜇 𝑥 , 𝛾𝜈 𝑥 = 2𝑔𝜇𝜈 𝑥 , 𝛾 ෝ𝑚, 𝛾 ො𝑛 = 2𝜂 ෝ𝑚 ො𝑛

Covariant derivative :∇𝜇= 𝜕𝜇 + Γ𝜇, Γ𝜇 = −
𝑖

4
𝜔𝜇 Ƹ𝑖 Ƹ𝑗𝜎

Ƹ𝑖 Ƹ𝑗, 𝜎𝑖𝑗 =
𝑖

2
[𝛾 Ƹ𝑖, 𝛾 Ƹ𝑗], 𝜔𝜇 Ƹ𝑖 Ƹ𝑗 = 𝑔𝑎𝑏𝑒 Ƹ𝑖

𝑎∇𝜇𝑒 Ƹ𝑗
𝑏

Γ0 = −
𝑖

2
𝝎 ⋅ 𝜎 +

1

2
𝒂 ⋅ 𝜶,

𝛾0 𝑥 =
1

1 + 𝒂 ⋅ 𝒙
𝛾෡0, 𝛾𝑖 𝑥 =

ቀ𝝎 × 𝒙 )𝑖

1 + 𝒂 ⋅ 𝒙
𝛾෡0 + 𝛾 Ƹ𝑖

NJL model action in rotation and acceleration frame:

𝑺 = න𝒅𝟒 𝒙 ഥ𝝍 𝒊𝜸ෝ𝝁𝛛𝝁 + 𝒊𝒂 ⋅ 𝒙𝜸 Ƹ𝒊𝛛𝒊 +
𝒊

𝟐
𝒂 ⋅ 𝜸 + 𝜸

෡𝟎𝝎 ⋅ 𝑱 −𝒎𝟎𝝓 𝝍+
𝑮

𝟐
𝝓 ቀഥ𝝍𝝍 )𝟐 + ഥ𝝍𝒊𝜸𝟓𝝍

𝟐

Where  𝜙 = 1 + 𝒂 ⋅ 𝒙
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𝒊𝜸ෝ𝝁𝛛𝝁 + 𝒊𝒂 ⋅ 𝒙𝜸 Ƹı𝛛𝒊 +
𝒊
𝟐𝒂 ⋅ 𝜸 + 𝜸

෡𝟎𝝎 ⋅ 𝑱

𝝓
−𝒎 𝝍 = 𝟎

The Dirac equation:



02Green’s functions 

Solve the Dirac equation directly maybe is practicable, but it would be easier to simplify 
the calculation by introduce the Green’s functions 𝑆(𝑥, 𝑦, 𝑠) and 𝐺(𝑥, 𝑦, 𝑠) :

መ𝐴 − 𝑠 𝑆(𝑥, 𝑦, 𝑠) =
1

−𝑔
𝛿 𝑥 𝑦 ,

መ𝐴 + 𝑠† 𝐺(𝑥, 𝑦, 𝑠) = 𝑆 𝑥 𝑦 𝑠 ,

መ𝐴2 − 𝑠†𝑠 𝐺(𝑥, 𝑦, 𝑠) =
1

−𝑔
𝛿 𝑥 𝑦 .

𝐴2 =
1

𝜙2
𝑖𝜕0 +

𝜎3
2

+ ෠𝐿𝑧 𝜔
2

−
1

4
𝑎2 + 𝜕3

2 +
1

𝜙
𝑎𝜕3 + ො𝛾0 ො𝛾3

𝑎

𝜙2
𝑖 𝑖𝜕0 +

𝜎3
2

+ ෠𝐿𝑧 + 𝜕1
2 + 𝜕2

2

መ𝐴 ≡
𝛾෡0

𝜙
𝑖𝜕0 +𝜔

𝜎3
2

+ ෠𝐿𝑧 +
𝑖

2
𝑎𝛾෡0𝛾෡3 + 𝑖𝛾 Ƹı𝜕𝑖
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𝛾෡0

𝜙
𝑖𝜕0 + 𝜔

𝜎3
2

+ ෠𝐿𝑧 +
𝑖

2
𝑎𝛾෡0𝛾෡3 + 𝑖𝛾 Ƹı𝜕𝑖 ≡ መ𝐴 መ𝐴 − 𝑚 𝜓 = 0

To simplify the formalism, both acceleration and rotation are 
chosen along the z-direction.



02Acceleration case

𝐴2 =
1

𝜙2 𝑖𝜕0
2 −

1

4
𝑎2 + 𝜕3

2 +
1

𝜙
𝑎𝜕3 + ො𝛾0 ො𝛾3

𝑎

𝜙2 𝑖 𝑖𝜕0 + 𝜕1
2 + 𝜕2

2

መ𝐴 ≡
𝛾෡0

𝜙
𝑖𝜕0 +

𝑖

2
𝑎𝛾෡0𝛾෡3 + 𝑖𝛾 Ƹı𝜕𝑖
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෠𝑄 =
1

𝜙2 𝑖𝜕0
2 −

1

4
𝑎2 + 𝜕3

2 +
1

𝜙
𝑎𝜕3 + 𝜕1

2 + 𝜕2
2 − 𝑠2

෠𝑅 =
𝑎

𝜙2 𝑖 𝑖𝜕0

መ𝐴2 − 𝑠2 = ෠𝑄 + ෠𝑅 ෠𝑃+ + ෠𝑄 − ෠𝑅 ෠𝑃−

Projection operators: ෠𝑃± =
1

2
1 ± 𝛾෡0𝛾෡3

The differential equation can be decoupled into two terms:

There is no gamma matrices in ෠𝑄 and ෠𝑅



02Eigenfunction
෠𝑄 ± ෠𝑅 =

1

𝜙2 [𝐸
2 −

1

4
𝑎2] − 𝑝𝑙,𝑘

2 − 𝑠2 + 𝜕3
2 +

1

𝜙
𝑎𝜕3 ±

𝑎

𝜙2 𝑖𝐸

𝑎2
𝑑2

𝑑𝜙2 +
𝑎2

𝜙

𝑑

𝑑𝜙
− 𝑝𝑙,𝑘

2 + 𝑠2 −
𝐸2 −

1
4 𝑎

2

𝜙2 ∓
𝑎

𝜙2 𝑖𝜀 𝑓± 𝜙 = 0

𝑎2𝛼2
𝑑2

𝑑𝛼2𝜙2 +
1

𝛼𝜙

𝑑

𝑑𝛼𝜙
− 1 +

−
𝑖𝐸
𝑎 ±

1
2

2

𝛼2𝜙2 𝑓± 𝛼𝜙 = 0

, 𝑤ℎ𝑒𝑟𝑒 𝜙 = 1 + 𝑎𝑧 , 𝛼 =
𝑝𝑙,𝑘
2 + 𝑠2

𝑎2

1
2

𝑓Ω
± (𝛼𝜙) =

 (∓2𝑖Ω/𝑎 − 1)cosh⁡(𝜋Ω/𝑎)

𝜋
𝐾𝑖Ω

𝑎
±

1
2

(𝛼𝜙) The solution:

The orthonormal condition :

𝐾𝜇 is the modified Bessel function
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02Green’s functions 
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𝐺 𝑥1, 𝑥2; 𝑠 = ඲
𝑑𝑝0
(2𝜋)

𝑑𝑝𝑡
2

2𝜋 2 𝑒
−𝑖𝑝0 𝑡1−𝑡2 +𝑖𝒑𝑡⋅𝒙𝑡𝒢 𝑧1, 𝑧2, 𝑝𝑡; 𝑠

𝐺 is divided into two part: 𝐺 = 𝑃+𝐺+ + 𝑃−𝐺−

With the eigenfunctions and the orthonormal relation,𝒢± are obtained:



04Gap equation
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After performed the Matsubara summation, the gap 
equation become:

We apply the condition 𝜙 = 1, where is the 
position of a uniform acceleration observer.

▪ The acceleration restore the chiral symmetry when 𝑻 is near 𝑻𝑼.

▪ When the acceleration is small, there is a small fluctuation, possibly 
due to numerical computation reasons.

▪ As the temperature increases，i.e. 𝑻 = 𝟏. 𝟑𝑻𝑼, the chiral condensate 
no longer decreases uniformly with changes in acceleration.

It seems we have some problem if we set 𝑻 ≠ 𝑻𝑼

𝑇 is temperature in acceleration frame, in the 
past study always been set to 𝑇 = 𝑇𝑈



02Acceleration and rotation case

෠𝑄 =
1

𝜙2 𝑖𝜕0 +
𝜎3
2

+ ෠𝐿𝑧 𝜔
2

−
1

4
𝑎2 + 𝜕3

2 +
1

𝜙
𝑎𝜕3 + 𝜕1

2 + 𝜕2
2 − 𝑠2

෠𝑅 =
𝑎

𝜙2 𝑖 𝑖𝜕0 +
𝜎3
2

+ ෠𝐿𝑧 𝜔

መ𝐴2 − 𝑠2 = ෠𝑄 + ෠𝑅 ෠𝑃+ + ෠𝑄 − ෠𝑅 ෠𝑃−

෠𝑄 ± ෠𝑅 =
1

𝜙2
[ 𝐸 + 𝑗𝜔 2 −

1

4
𝑎2] − 𝑝𝑙,𝑘

2 − 𝑠2 + 𝜕3
2 +

1

𝜙
𝑎𝜕3 ±

𝑎

𝜙2
𝑖 𝐸 + 𝑗𝜔

𝐴2 =
1

𝜙2 𝑖𝜕0 +
𝜎3
2

+ ෠𝐿𝑧 𝜔
2

−
1

4
𝑎2 + 𝜕3

2 +
1

𝜙
𝑎𝜕3 + ො𝛾0 ො𝛾3

𝑎

𝜙2 𝑖 𝑖𝜕0 +
𝜎3
2

+ ෠𝐿𝑧 𝜔 + 𝜕1
2 + 𝜕2

2
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The form is the same just replace 𝐸 with 𝜀, 𝑤ℎ𝑒𝑟𝑒 𝜀 = 𝐸 + 𝜔𝑗.



02Green’s functions 

𝐺 𝑥1 𝑥2 𝑠 = ෍

𝑙,𝑘

න
𝑑𝑝0
2𝜋

𝑒−𝑖𝑝0 𝑡1−𝑡2
1

2𝜋

2

𝐽𝑙+1
2 𝑝𝑙,𝑘𝑅 𝑅2

ℳ 𝑙 𝑘 𝑥1 𝑥2 𝒢 𝑧1 𝑧2 𝑙 𝑘 𝑠

ℳ 𝑙 𝑘 𝑥1 𝑥2 = 𝑑𝑖𝑎𝑔 𝜂𝑙𝜂𝑙
, , 𝜉𝑙𝜉𝑙

, , 𝜂𝑙𝜂𝑙
, , 𝜉𝑙𝜉𝑙

, 𝑎𝑛𝑑 𝜂𝑙 = 𝑒𝑖𝑙𝜃𝐽𝑙 𝑝𝑙,𝑘𝑟 , 𝜉𝑙 = 𝑒𝑖 𝑙+1 𝜃𝐽𝑙+1 𝑝𝑙,𝑘𝑟

𝐺 = ෍  

𝑠1 ,𝑠2=±1

1

2
(1 + 𝑠1𝛾

0෡𝛾3෡)
1

2
(1 + 𝑠2𝑖𝛾

1෡𝛾2෡)𝒢𝑠1 ,𝑠2

𝒢𝑠1 ,𝑠2 = ෍ 

𝑙 ,𝑘

∫
𝑑𝑝0

2𝜋
−

1

ቀ−𝑖𝜀 ±
1
2
𝑎 

2

− ቀ𝑖Ω ±
1
2
𝑎 

2

(∓2𝑖Ω/𝑎 − 1)cosh⁡(𝜋Ω/𝑎)

𝜋2
𝐾𝑖Ω

𝑎
±

1
2

(𝛼𝜙1)𝐾𝑖Ω
𝑎

±
1
2

(𝛼𝜙2)

×
1

2𝜋

1

𝑁𝑙 ,𝑘
𝑒𝑖(𝑗−𝑠2/2)(𝜃1−𝜃2)𝐽𝑗−𝑠2/2(𝑝𝑙,𝑘𝑟1)𝐽𝑗−𝑠2/2(𝑝𝑙 ,𝑘𝑟2)

 

Projection operator for rotation part:

෢𝑃1
±
=

1

2
1 ± 𝑖𝛾෡1𝛾෡2 ,ℳ = ෢𝑃1

+
𝜂𝜂, +෢𝑃1

−
𝜉𝑙𝜉𝑙

,

20



02Gap equation

1

𝐺
= ෍

𝑙,𝑘,𝑠1

න𝑑𝛺
1

2𝜋

1

𝑁𝑙,𝑘

−𝑖𝑠1
2𝑎

𝑐𝑜𝑠ℎ 𝜋 ΤΩ 𝑎

𝜋2
tan h

Ω − 𝜔𝑗

2𝑇
+ tan h

Ω + 𝜔𝑗

2𝑇

× 𝐾𝑖Ω
𝑎
+𝑠1

1
2

2 𝛼𝜙 𝐽𝑙
2 𝑝𝑙,𝑘𝑟 + 𝐽𝑙+1

2 𝑝𝑙,𝑘𝑟

𝑚

𝐺
= 𝑖 tr 𝑆  

When 𝑇 =
𝑎

2𝜋
 , , 𝑚0 = 0 ,  the gap equation become

When 𝑚0 = 0 , we can set 𝜋 condensate  𝜋 = 0 

If we ignore the boundary and take the non rotation limit, we have

which is consistent with previous work.
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02Result

22

▪𝑻 = 𝑻𝑼

▪both acceleration and rotation restore the chiral symmetry



02Critical acceleration
1

𝐺
= ෍

𝑙,𝑘,𝑠1

න𝑑𝛺
1

2𝜋

1

𝑁𝑙,𝑘

−𝑖𝑠1
2𝑎

𝑐𝑜𝑠ℎ 𝜋 ΤΩ 𝑎

𝜋2
tanh

Ω − 𝜔𝑗

2𝑇
+ tanh

Ω + 𝜔𝑗

2𝑇

× 𝐾𝑖Ω
𝑎
+𝑠1

1
2

2 𝛼𝜙 𝐽𝑙
2 𝑝𝑙,𝑘𝑟 + 𝐽𝑙+1

2 𝑝𝑙,𝑘𝑟

23

Where,𝛼 =
𝑝𝑙,𝑘
2 +𝑚2

𝑎2

1

2

We define critical acceleration 𝑎𝑐, when 𝑚 = 0

We can work out the relationship between 𝑎𝑐 and ω analytically

𝐺
Λ2

2𝜋2 −
𝑎2 𝑟4𝜔4 + 1 − 𝑟2𝜔4 + 3𝜔2

24𝜋2 𝑟2𝜔2 − 1 2 = 1
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𝐺
Λ2

2𝜋2
−
𝑎2 𝑟4𝜔4 + 1 − 𝑟2𝜔4 + 3𝜔2

24𝜋2 𝑟2𝜔2 − 1 2
= 1

The critical acceleration (𝒂𝒄) decreases as the angular velocity increases.
The effects of rotation become increasingly significant with increasing radius.
The rotation at 𝒓 = 𝟎 still has an effect because fermions have a spin of 1/2.



02Gap equation
The case 𝑚0 ≠ 0
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▪ When 𝑇=𝑎/2𝜋, the second term vanish such that no pion condensate.

▪ The chiral symmetry would not restore  with non-vanish current quark mass.



04Result in 𝑻 ≠ 𝑻𝑼

𝑎 = 0.6𝐺𝑒𝑉

▪ Acceleration and rotation induced the pion (𝝅𝟎) condensate when 𝑻 ≠ 𝑻𝑼

▪ The pion (𝝅𝟎) condensate is a odd function of 𝝎 and constitute quark mass m is even

▪ The presence of 𝒂 ⋅ 𝝎 tends to diminish 𝝈 condensate while drive 𝝅𝟎 condensation which is similar to the 
presence of 𝑬 ⋅ 𝑩

β =
𝑛2𝜋

𝑎
𝑛 = 0.8

Condensate as functions of rotation 𝝎
The constitute quark mass m and 𝝅𝟎 condensate as functions of 𝑰

𝟏

𝟒    
(Cao, G., & Huang, X. G. (2016). Physics Letters B, 757, 1-5. 

arXiv:1509.06222 )

𝐼2 = 𝑬 ⋅ 𝑩

27

𝜌 = 𝑚2 + 𝜋02
1/2



04Result from gap equation

condensate as a function of rotation with different acceleration

𝑎 = 0.5 𝐺𝑒𝑉 𝑎 = 0.7𝐺𝑒𝑉

▪ The minimum of 𝒎 is depend on 𝒂

▪ With a larger 𝒂, the constitute quark mass will decrease to zero while the rotation increasing. 

▪ There exist a region(red dash line) we cannot find solutions that satisfy both gap equations simultaneously.

▪ In the parallel electromagnetic study, they call this “chiral instability”  

β =
𝑛2𝜋

𝑎
𝑛 = 0.8

28
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Summary

▪The acceleration and rotation restore the chiral symmetry

▪The presence of 𝒂 ⋅ 𝝎 induce the pion condensate when 𝑻 ≠
𝒂/𝟐𝝅

▪Exist a chiral rotation from 𝝈 to 𝝅𝟎

Outlook

▪The relationship between temperature in acceleration frame 
and inertial frame remains unclear.

▪The phase structure is complex and seems inexplicable in 𝑻 − 𝒂

plane.



Thanks！
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