Chiral restoration driven spin polarization

Radoslaw Ryblewski

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

8th International Conference on Chirality, Vorticity, and Magnetic Field in Quantum Matter Jul 22 – 26, 2024 West University of Timisoara, Romania

S. Bhadury, A. Das, W. Florkowski, Gowthama K. K., R. R., Phys. Lett. B 849 (2024) 138464

Features of non-central collisions :

Before collision

After collision

Figure 1: Heavy-ion collision experiments. [LHC Collaboration, JINST 17 (2022) 05, P05009]

• Special feature of Non-Central Collisions :

- Large Magnetic Field. [A. Bzdak and, V. Skokov, Phys. Lett. B 710 (2012) 171-174]
- Large Angular Momentum. [F. Becattini et. al. Phys. Rev. C 77 (2008) 204906]
- Particle polarization at small $\sqrt{S_{NN}}$. [STAR Collaboration, Nature 548 62-65, 2017]

Particle polarization :

Figure 2: Origin of particle polarization. [W. Florkowski et al, PPNP 108 (2019) 103709]

Large orbital angular momentum → local vorticity → spin alignment
 [Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005); Phys. Lett. B 629, 20 (2005)]

Particle polarization :

Experimental evidence, [STAR Collaboration, Nature 548, 62 (2017), Phys. Rev. Lett. 123, 132301 (2019), Phys. Rev. Lett. 126, 162301 (2021)]

 $\circ~$ Theoretical models assuming equilibration of spin d.o.f. explain this data.

Particle polarization :

Figure 3: Observation (L) and prediction (R) of longitudinal polarization. [Left: Phys. Rev. Lett. 123 132301 (2019); Right: Phys. Rev. Lett. 120 012302 (2018)]

 $\circ~$ Theoretical models assuming equilibration of spin d.o.f. predict the opposite sign.

• Non-local collisions have been considered.

[N. Weickgenannt et. al., Phys. Rev. Lett. 127 052301 (2021); Phys. Rev. D 106, 116021 (2022)]

• Non-local collisions have been considered.

[N. Weickgenannt et. al., Phys. Rev. Lett. 127 052301 (2021); Phys. Rev. D 106, 116021 (2022)]

• Dissipative spin-hydrodynamics has been formulated. [SB et. al., Phys.Lett.B 814 136096 (2021); Phys. Rev. D 103 014030 (2021)]

• Non-local collisions have been considered.

[N. Weickgenannt et. al., Phys. Rev. Lett. 127 052301 (2021); Phys. Rev. D 106, 116021 (2022)]

- Dissipative spin-hydrodynamics has been formulated. [SB et. al., Phys.Lett.B 814 136096 (2021); Phys. Rev. D 103 014030 (2021)]
- Effect of magnetic field has been acknowledged. [SB et. al., Phys. Rev. Lett. **129** 192301 (2022); R. Singh et. al., Phys. Rev. D **103** 094034 (2021)]

• Non-local collisions have been considered.

[N. Weickgenannt et. al., Phys. Rev. Lett. 127 052301 (2021); Phys. Rev. D 106, 116021 (2022)]

- Dissipative spin-hydrodynamics has been formulated. [SB et. al., Phys.Lett.B 814 136096 (2021); Phys. Rev. D 103 014030 (2021)]
- Effect of magnetic field has been acknowledged.
 [SB et. al., Phys. Rev. Lett. 129 192301 (2022); R. Singh et. al., Phys. Rev. D 103 094034 (2021)]
- Shear stress has been proposed as a possible solution.
 [F. Becattini et. al., Phys. Lett. B 820 136519 (2021);
 S. Y.F. Liu et. al., Phys. Rev. Lett. 125 062301 (2020)]

• Non-local collisions have been considered.

[N. Weickgenannt et. al., Phys. Rev. Lett. 127 052301 (2021); Phys. Rev. D 106, 116021 (2022)]

- Dissipative spin-hydrodynamics has been formulated. [SB et. al., Phys.Lett.B 814 136096 (2021); Phys. Rev. D 103 014030 (2021)]
- Effect of magnetic field has been acknowledged.
 [SB et. al., Phys. Rev. Lett. 129 192301 (2022); R. Singh et. al., Phys. Rev. D 103 094034 (2021)]
- Shear stress has been proposed as a possible solution.
 [F. Becattini et. al., Phys. Lett. B 820 136519 (2021);
 S. Y.F. Liu et. al., Phys. Rev. Lett. 125 062301 (2020)]
- $\circ~$ Ambiguity still remains.

[W. Florkowski et. al., Phys. Rev. C 105 064901 (2022)]

• Non-local collisions have been considered.

[N. Weickgenannt et. al., Phys. Rev. Lett. 127 052301 (2021); Phys. Rev. D 106, 116021 (2022)]

- Dissipative spin-hydrodynamics has been formulated. [SB et. al., Phys.Lett.B 814 136096 (2021); Phys. Rev. D 103 014030 (2021)]
- Effect of magnetic field has been acknowledged.
 [SB et. al., Phys. Rev. Lett. 129 192301 (2022); R. Singh et. al., Phys. Rev. D 103 094034 (2021)]
- Shear stress has been proposed as a possible solution.
 [F. Becattini et. al., Phys. Lett. B 820 136519 (2021);
 S. Y.F. Liu et. al., Phys. Rev. Lett. 125 062301 (2020)]
- $\circ~$ Ambiguity still remains.

[W. Florkowski et. al., Phys. Rev. C 105 064901 (2022)]

 $\circ~$ We would like to examine the effect of mean scalar field.

• A theory with spin should be constructed from Quantum Field Theory.

- A theory with spin should be constructed from Quantum Field Theory.
- Based on QFT we have to formulate the dynamical equations for macroscopic observables.

- A theory with spin should be constructed from Quantum Field Theory.
- Based on QFT we have to formulate the dynamical equations for macroscopic observables.
- The connection between the two is established via Wigner function (WF).

- A theory with spin should be constructed from Quantum Field Theory.
- Based on QFT we have to formulate the dynamical equations for macroscopic observables.
- The connection between the two is established via Wigner function (WF).

QFT
$$\xrightarrow{WF}$$
 Kinetic Equation $\xrightarrow{\int_{p}}$ Macroscopic theory.

NJL model in the mean field approximation :

• Let us consider the Lagrangian of the Nambu-Jona-Lasinio (NJL) type [W. Florkowski, J. Hufner , S.P. Klevansky, L. Neise, Annals Phys. **245** 445-463 (1996)]

$$\mathscr{L} = \bar{\psi} \left(i \, \partial \!\!\!/ - m_{\rm o} \right) \psi + G \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma_5 \psi \right)^2 \right].$$

NJL model in the mean field approximation :

• Let us consider the Lagrangian of the Nambu-Jona-Lasinio (NJL) type [W. Florkowski, J. Hufner, S.P. Klevansky, L. Neise, Annals Phys. **245** 445-463 (1996)]

$$\mathscr{L} = \bar{\psi} \left(i \, \partial \!\!\!/ - m_{\rm o} \right) \psi + G \left[\left(\bar{\psi} \psi \right)^2 + \left(\bar{\psi} i \gamma_5 \psi \right)^2 \right].$$

• This leads to the equation of motion (we assume $m_{\rm o}=$ 0)

$$\left[i\,\partial \!\!\!/ -\sigma(x)-i\gamma_5\,\pi(x)\right]\psi=\mathsf{0},$$

where we restrict ourselves to the mean field approximation

$$\sigma = \langle \hat{\sigma} \rangle = -2G \ \left< \bar{\psi} \psi \right>, \qquad \qquad \pi = \left< \hat{\pi} \right> = -2G \ \left< \bar{\psi} \, i \gamma_5 \psi \right>.$$

• The Wigner function is defined as

$$\mathcal{W}_{\alpha\beta}(x,k) \equiv \int d^4y \, e^{ik \cdot y} \, G_{\alpha\beta}\left(x + \frac{y}{2}, x - \frac{y}{2}\right)$$

where $G_{\alpha\beta}(x,y) = \langle \bar{\psi}_{\beta}(y)\psi_{\alpha}(x) \rangle$.

• The Wigner function is defined as

$$\mathcal{W}_{lphaeta}(x,k) \equiv \int d^4y \, e^{ik\cdot y} \, G_{lphaeta}\left(x+rac{y}{2},x-rac{y}{2}
ight)$$

where $G_{\alpha\beta}(x,y) = \langle \bar{\psi}_{\beta}(y)\psi_{\alpha}(x) \rangle$.

• The kinetic equation satisfied by the Wigner function is

$$\left[K^{\mu}\gamma_{\mu}-\sigma+\frac{i\hbar}{2}\left(\partial_{\mu}\sigma\right)\partial_{k}^{\mu}-i\gamma_{5}\pi-\frac{\hbar}{2}\gamma_{5}\left(\partial_{\mu}\pi\right)\partial_{k}^{\mu}\right]\mathcal{W}(x,k)=0.$$

where $K^{\mu} = k^{\mu} + \frac{i\hbar}{2}\partial^{\mu}$.

Clifford-algebra decomposition :

• We can decompose the Wigner function in the Clifford-algebra basis as

$$\mathcal{W} = \mathcal{F} + i\gamma_5 \mathcal{P} + \gamma_\mu \mathcal{V}^\mu + \gamma^\mu \gamma_5 \mathcal{A}_\mu + \frac{1}{2} \sigma^{\mu\nu} \mathcal{S}_{\mu\nu},$$

where $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}].$

Clifford-algebra decomposition :

• We can decompose the Wigner function in the Clifford-algebra basis as

$$\mathcal{W} = \mathcal{F} + i\gamma_5 \mathcal{P} + \gamma_\mu \mathcal{V}^\mu + \gamma^\mu \gamma_5 \mathcal{A}_\mu + \frac{1}{2} \sigma^{\mu\nu} \mathcal{S}_{\mu\nu},$$

where $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}].$

• The components are real and obtained by respective traces

$$\mathcal{F} = \mathrm{Tr}\Big[\mathcal{W}\Big], \quad \mathcal{P} = -i\mathrm{Tr}\Big[\gamma_5\mathcal{W}\Big], \quad \mathcal{V}^{\mu} = \mathrm{Tr}\Big[\gamma^{\mu}\mathcal{W}\Big], \quad \mathcal{A}^{\mu} = -\mathrm{Tr}\Big[\gamma_5\gamma^{\mu}\mathcal{W}\Big], \quad (\dots)$$

Clifford-algebra decomposition :

• We can decompose the Wigner function in the Clifford-algebra basis as

$$\mathcal{W} = \mathcal{F} + i\gamma_5 \mathcal{P} + \gamma_\mu \mathcal{V}^\mu + \gamma^\mu \gamma_5 \mathcal{A}_\mu + \frac{1}{2} \sigma^{\mu\nu} \mathcal{S}_{\mu\nu},$$

where $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}].$

• The components are real and obtained by respective traces

$$\mathcal{F} = \mathrm{Tr}\Big[\mathcal{W}\Big], \quad \mathcal{P} = -i\mathrm{Tr}\Big[\gamma_5\mathcal{W}\Big], \quad \mathcal{V}^{\mu} = \mathrm{Tr}\Big[\gamma^{\mu}\mathcal{W}\Big], \quad \mathcal{A}^{\mu} = -\mathrm{Tr}\Big[\gamma_5\gamma^{\mu}\mathcal{W}\Big], \quad (\dots)$$

• The quantum kinetic equations for the components resulting from the kinetic equation for the Wigner function are

$$\begin{split} K^{\mu}\mathcal{V}_{\mu} - \sigma\mathcal{F} + \pi\mathcal{P} &= -\frac{i\hbar}{2} \Big[\left(\partial_{\nu}\sigma \right) \left(\partial_{k}^{\nu}\mathcal{F} \right) - \left(\partial_{\nu}\pi \right) \left(\partial_{k}^{\nu}\mathcal{P} \right) \Big] \\ -iK^{\mu}\mathcal{A}_{\mu} - \sigma\mathcal{P} - \pi\mathcal{F} &= -\frac{i\hbar}{2} \Big[\left(\partial_{\nu}\sigma \right) \left(\partial_{k}^{\nu}\mathcal{P} \right) + \left(\partial_{\nu}\pi \right) \left(\partial_{k}^{\nu}\mathcal{F} \right) \Big] \\ K_{\mu}\mathcal{F} + iK^{\nu}\mathcal{S}_{\nu\mu} - \sigma\mathcal{V}_{\mu} + i\pi\mathcal{A}_{\mu} &= -\frac{i\hbar}{2} \Big[\left(\partial_{\nu}\sigma \right) \left(\partial_{k}^{\nu}\mathcal{V}_{\mu} \right) - \left(\partial_{\nu}\pi \right) \left(\partial_{k}^{\nu}\mathcal{A}_{\mu} \right) \Big] \\ iK^{\mu}\mathcal{P} - K_{\nu}\tilde{\delta}^{\nu\mu} - \sigma\mathcal{A}^{\mu} + i\pi\mathcal{V}^{\mu} &= -\frac{i\hbar}{2} \Big[\left(\partial_{\nu}\sigma \right) \left(\partial_{k}^{\nu}\mathcal{A}^{\mu} \right) - \left(\partial_{\nu}\pi \right) \left(\partial_{k}^{\nu}\mathcal{V}^{\mu} \right) \Big] \\ K^{[\mu}\mathcal{V}^{\nu]} - \varepsilon^{\mu\nu\alpha\beta}K_{\alpha}\mathcal{A}_{\beta} - \pi\tilde{\delta}^{\mu\nu} + \sigma\delta^{\mu\nu} &= \frac{i\hbar}{2} \Big[\left(\partial_{\gamma}\sigma \right) \left(\partial_{k}^{\gamma}\delta^{\mu\nu} \right) - \left(\partial_{\gamma}\pi \right) \left(\partial_{k}^{\gamma}\tilde{\delta}^{\mu\nu} \right) \Big] \end{split}$$

where $\tilde{\delta}^{\mu\nu} = \frac{1}{2} \varepsilon^{\mu\nu\alpha\beta} \delta_{\alpha\beta}$.

 $_{2i}$

Semiclassical expansion :

• In order to obtain the classical transport equations one makes semiclassical expansion of the WF components as follows

 $\mathfrak{X} = \mathfrak{X}_{(0)} + \hbar \mathfrak{X}_{(1)} + \hbar^2 \mathfrak{X}_{(2)} + \cdots$

• In order to obtain the classical transport equations one makes semiclassical expansion of the WF components as follows

 $\mathfrak{X} = \mathfrak{X}_{(0)} + \hbar \mathfrak{X}_{(1)} + \hbar^2 \mathfrak{X}_{(2)} + \cdots$

• In the classical limit the spin dynamics is described by the behavior of the axial current density $\mathscr{A}^{\mu}_{(0)}$ whose evolution equation is determined by considering the transport equations up to the first order in \hbar .

Kinetic equation for axial current

- In the following we will set $\pi = 0$ and $\sigma_{(0)}(x) = M(x)$.
- M(x) is the in-medium mass of particles, which is treated as externally given and plays the role of a background scalar field.

Kinetic equation for axial current

- In the following we will set $\pi = 0$ and $\sigma_{(0)}(x) = M(x)$.
- M(x) is the in-medium mass of particles, which is treated as externally given and plays the role of a background scalar field.
- We can obtain the kinetic equation for axial current as

[W. Florkowski, J. Hufner , S.P. Klevansky, L. Neise, Annals Phys. 245 445-463 (1996)]

$$k^{\alpha} \left(\partial_{\alpha} \mathcal{A}^{\mu}\right) + M \left(\partial_{\alpha} M\right) \left(\partial_{(k)}^{\alpha} \mathcal{A}^{\mu}\right) + \left(\partial_{\alpha} \ln M\right) \left(k^{\mu} \mathcal{A}^{\alpha} - k^{\alpha} \mathcal{A}^{\mu}\right) = \mathbf{0}.$$

Kinetic equation for axial current

- In the following we will set $\pi = 0$ and $\sigma_{(0)}(x) = M(x)$.
- M(x) is the in-medium mass of particles, which is treated as externally given and plays the role of a background scalar field.
- We can obtain the kinetic equation for axial current as

[W. Florkowski, J. Hufner , S.P. Klevansky, L. Neise, Annals Phys. 245 445-463 (1996)]

$$k^{\alpha} \left(\partial_{\alpha} \mathcal{A}^{\mu}\right) + M \left(\partial_{\alpha} M\right) \left(\partial_{(k)}^{\alpha} \mathcal{A}^{\mu}\right) + \left(\partial_{\alpha} \ln M\right) \left(k^{\mu} \mathcal{A}^{\alpha} - k^{\alpha} \mathcal{A}^{\mu}\right) = \mathbf{0}.$$

• In the leading order of the semiclassical expansion, one can use the ansatz [S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, R. R., Phys. Lett. B 814 (2021) 136096]

$$\mathscr{A}^{\mu}(x,k) = 2M \int dP \, dS \, s^{\mu} \Big[f^{+}(x,p,s) \delta^{(4)}(k-p) + f^{-}(x,p,s) \delta^{(4)}(k+p) \Big].$$

where $f^{\pm}(x, p, s)$ are the distribution functions for particles (+) and antiparticles (-) in the extended phase-space of position x, on-shell momentum $p^{\mu} = (p^{o}, \mathbf{p})$ $(p^{2} = M^{2}(x))$, and spin $s^{\mu} = (s^{o}, \mathbf{s})$.

- Integration measures are: $dP = \frac{d^3p}{E_p}, dS = \left(\frac{M}{\pi \mathfrak{s}}\right) d^4s \,\delta(s \cdot s + \mathfrak{s}^2) \,\delta(p \cdot s).$
- This ansatz satisfies the condition: $k \cdot \mathcal{A}(x, k) = 0$.

• The hydrodynamic variable describing the dynamics of spin is the spin tensor $S^{\lambda\mu\nu}(x).$

- The hydrodynamic variable describing the dynamics of spin is the spin tensor $S^{\lambda\mu\nu}(x).$
- The **canonical** spin tensor is defined as

$$S_{\mathrm{can}}^{\lambda\mu\nu}(x) = \frac{1}{2} \varepsilon^{\lambda\mu\nu\alpha} \int d^4k \, \mathcal{A}_{\alpha}(x,k).$$

- The hydrodynamic variable describing the dynamics of spin is the spin tensor $S^{\lambda\mu\nu}(x)$.
- The canonical spin tensor is defined as

$$S_{\operatorname{can}}^{\lambda\mu\nu}(x) = \frac{1}{2} \, \varepsilon^{\lambda\mu\nu\alpha} \int d^4k \, \mathscr{A}_{\alpha}(x,k).$$

• The GLW (de Groot, van Leeuwen, van Weert) spin tensor is defined as

[S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, R. R., Phys. Lett. B 814 (2021) 136096]

$$S^{\lambda,\mu\nu}(x) = \int dP \, dS \, p^{\lambda} s^{\mu\nu} [f^+(x,p,s) + f^-(x,p,s)].$$

where $s^{\alpha\beta} = \frac{1}{M} \varepsilon^{\alpha\beta\mu\nu} p_{\mu}s_{\nu}$ is the internal angular momentum tensor originally introduced by Mathisson.

- The hydrodynamic variable describing the dynamics of spin is the spin tensor $S^{\lambda\mu\nu}(x)$.
- The canonical spin tensor is defined as

$$S_{\mathrm{can}}^{\lambda\mu\nu}(x) = \frac{1}{2} \, \varepsilon^{\lambda\mu\nu\alpha} \int d^4k \, \mathscr{A}_{\alpha}(x,k).$$

• The GLW (de Groot, van Leeuwen, van Weert) spin tensor is defined as

[S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, R. R., Phys. Lett. B 814 (2021) 136096]

$$S^{\lambda,\mu\nu}(x) = \int dP \, dS \, p^{\lambda} s^{\mu\nu} [f^+(x,p,s) + f^-(x,p,s)].$$

where $s^{\alpha\beta} = \frac{1}{M} \varepsilon^{\alpha\beta\mu\nu} p_{\mu}s_{\nu}$ is the internal angular momentum tensor originally introduced by Mathisson.

• $S^{\lambda\mu\nu}(x)$ and $S^{\lambda\mu\nu}_{can}(x)$ are related by

[W. Florkowski, A. Kumar, R.R., Prog. Part. Nucl. Phys. 108 103709 (2019)]

$$S_{\rm can}^{\lambda\mu\nu} = S^{\lambda,\mu\nu} + S^{\mu,\nu\lambda} + S^{\nu,\lambda\mu}. \quad (\star)$$

Evolution of Spin Tensor :

• Recall the kinetic equation for the axial current

$$k^{\alpha} \left(\partial_{\alpha} \mathcal{A}^{\mu}\right) + M \left(\partial_{\alpha} M\right) \left(\partial_{(k)}^{\alpha} \mathcal{A}^{\mu}\right) + \left(\partial_{\alpha} \ln M\right) \left(k^{\mu} \mathcal{A}^{\alpha} - k^{\alpha} \mathcal{A}^{\mu}\right) = 0.$$

• Multiplying this by $k_\beta \varepsilon_\mu^{\ \beta\gamma\delta}$ and integrating over k we get evolution equation for the GLW spin tensor

[S. Bhadury, A. Das, W. Florkowski, Gowthama K. K., R. R., Phys. Lett. B 849 (2024) 138464]

$$\partial_{\alpha}S^{\alpha,\gamma\delta} = (\partial_{\alpha}\ln M)\left(S^{\gamma,\delta\alpha} - S^{\delta,\gamma\alpha}\right) \bigg| \neq 0$$

- As expected, the spin tensor is conserved when M is constant.
- However, if M varies the spin tensor is sourced through its derivative.

Conservation of Angular Momentum :

• Conservation of total angular momentum implies:

$$\partial_{\lambda} J^{\lambda,\mu\nu} = \mathbf{0}.$$

Conservation of Angular Momentum :

• Conservation of total angular momentum implies:

$$\partial_{\lambda} J^{\lambda,\mu\nu} = \mathbf{0}.$$

• Noting J = L + S, and $L^{\lambda,\mu\nu} = x^{\mu}T^{\lambda\nu} - x^{\nu}T^{\lambda\mu}$ we can write:

$$\partial_{\lambda} S_{\mathrm{can}}^{\lambda,\mu\nu} = T_{\mathrm{can}(\mathrm{a})}^{\nu\mu} - T_{\mathrm{can}(\mathrm{a})}^{\mu\nu}$$

Conservation of Angular Momentum :

• Conservation of total angular momentum implies:

$$\partial_{\lambda}J^{\lambda,\mu\nu} = \mathbf{0}$$

• Noting J = L + S, and $L^{\lambda,\mu\nu} = x^{\mu}T^{\lambda\nu} - x^{\nu}T^{\lambda\mu}$ we can write:

$$\partial_{\lambda} S_{\mathrm{can}}^{\lambda,\mu\nu} = T_{\mathrm{can}(\mathrm{a})}^{\nu\mu} - T_{\mathrm{can}(\mathrm{a})}^{\mu\nu}$$

• Using the results for the semiclassical expansion of the Wigner function (for spin-1/2 particles) one finds

[W. Florkowski, A. Kumar, R. Ryblewski, Phys. Rev. C 98 (4) (2018) 044906]

$$M\partial_{\lambda}S_{\rm can}^{\lambda,\mu\nu} = \partial_{\lambda}\left(MS^{\nu,\lambda\mu}\right) - \partial_{\lambda}\left(MS^{\mu,\lambda\nu}\right)$$

which using \star can be shown to reproduce equation for GLW spin tensor.

• Thus our approach is consistent with conservation of total angular momentum.

Analytic Solutions

Analytic Solutions:

Figure 4: Transverse view of non-central collisions. [SB et. al. PLB 849 (2024) 138464]

Analytic Solutions:

Figure 4: Transverse view of non-central collisions. [SB et. al. PLB 849 (2024) 138464]

• Consider a system expanding boost-invariantly along the *z*-axis:

$$f(x, p, s) = g(x, p, s)\delta(p_x)\delta(p_y)$$

Analytic Solutions:

Figure 4: Transverse view of non-central collisions. [SB et. al. PLB 849 (2024) 138464]

• Consider a system expanding boost-invariantly along the *z*-axis:

$$f(x, p, s) = g(x, p, s)\delta(p_x)\delta(p_y)$$

• Hence: $S^{\lambda,\mu\nu}(x) = \int dP \, dS \, p^{\lambda} s^{\mu\nu} g(x,p,s) \delta(p_x) \delta(p_y) \implies S^{1,\mu\nu} = S^{2,\mu\nu} = 0.$

• Transverse polarization implies:

$$g(x, p, s) = h(x, p, s)\delta(s_x)\delta(s_z)$$

• Transverse polarization implies:

$$g(x, p, s) = h(x, p, s)\delta(s_x)\delta(s_z)$$

Figure 5: Transverse polarization schematic diagram. [SB et. al. PLB 849 (2024) 138464]

• The spin tensor under transverse polarization becomes :

$$S^{\lambda,\mu\nu}(x) = \int dP \, dS \, p^{\lambda} s^{\mu\nu} h(x,p,s) \delta(s_x) \delta(s_z) \delta(p_x) \delta(p_y).$$

• The spin tensor under transverse polarization becomes :

$$S^{\lambda,\mu\nu}(x) = \int dP \, dS \, p^{\lambda} s^{\mu\nu} h(x,p,s) \delta(s_x) \delta(s_z) \delta(p_x) \delta(p_y).$$

 Furthermore, if M = M(t, z), then the only non-zero components of spin-tensor are S^{0,01}, S^{3,01}, S^{0,31}, S^{3,31}. • The spin tensor under transverse polarization becomes :

$$S^{\lambda,\mu\nu}(x) = \int dP \, dS \, p^{\lambda} s^{\mu\nu} h(x,p,s) \delta(s_x) \delta(s_z) \delta(p_x) \delta(p_y).$$

- Furthermore, if M = M(t, z), then the only non-zero components of spin-tensor are S^{0,01}, S^{3,01}, S^{0,31}, S^{3,31}.
- The dynamics of spin is described by:

$$\begin{split} \partial_0 S^{0,01} &+ \partial_3 S^{3,01} = \frac{\partial_0 M}{M} S^{0,10} + \frac{\partial_3 M}{M} S^{0,13}, \\ \partial_0 S^{0,31} &+ \partial_3 S^{3,31} = \frac{\partial_0 M}{M} S^{3,10} + \frac{\partial_3 M}{M} S^{3,13}. \end{split}$$

• Let us consider the following vector basis :

$$u^{\mu} = \begin{pmatrix} \frac{t}{\tau} \\ 0 \\ 0 \\ \frac{z}{\tau} \end{pmatrix}, \quad S_x^{\mu} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad S_y^{\mu} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad S_z^{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

where $\tau = \sqrt{t^2 + z^2}$.

• Let us consider the following vector basis :

$$u^{\mu} = \begin{pmatrix} \frac{t}{\tau} \\ 0 \\ 0 \\ \frac{z}{\tau} \end{pmatrix}, \quad S_{x}^{\mu} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad S_{y}^{\mu} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad S_{z}^{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

where $\tau = \sqrt{t^2 + z^2}$.

• This allows us to express the spin tensor parametrically as :

$$S^{\lambda,\mu\nu} = \sigma(\tau) \, u^{\lambda} \varepsilon^{\mu\nu\alpha\beta} \, u_{\alpha} \, S_{y,\beta}$$

• Let us consider the following vector basis :

$$u^{\mu} = \begin{pmatrix} \frac{t}{\tau} \\ 0 \\ 0 \\ \frac{z}{\tau} \end{pmatrix}, \quad S_x^{\mu} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad S_y^{\mu} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad S_z^{\mu} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
where $\tau = \sqrt{t^2 + z^2}$.

• This allows us to express the spin tensor parametrically as :

$$S^{\lambda,\mu\nu} = \sigma(\tau) \, u^{\lambda} \varepsilon^{\mu\nu\alpha\beta} \, u_{\alpha} \, S_{y,\beta}$$

• Then we have:

$$\frac{d\sigma}{d\tau} + \frac{\sigma}{\tau} = 0.$$
$$\implies \sigma(\tau) = \sigma(\tau_0) \frac{\tau_0}{\tau}.$$

i.e. the spin decouples from the change of M.

• Let us consider the following vector basis :

$$u^{\mu} = \begin{pmatrix} \frac{t}{\tau} \\ 0 \\ 0 \\ \frac{z}{\tau} \end{pmatrix}, \quad S_x^{\mu} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad S_y^{\mu} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad S_z^{\mu} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
where $\tau = \sqrt{t^2 + z^2}$.

• This allows us to express the spin tensor parametrically as :

$$S^{\lambda,\mu\nu} = \sigma(\tau) \, u^{\lambda} \varepsilon^{\mu\nu\alpha\beta} \, u_{\alpha} \, S_{y,\beta}$$

• Then we have:

$$\frac{d\sigma}{d\tau} + \frac{\sigma}{\tau} = 0.$$
$$\implies \sigma(\tau) = \sigma(\tau_0) \frac{\tau_0}{\tau}.$$

i.e. the spin decouples from the change of M.

• The solution is equivalent to conservation law in Bjorken model.

Analytic Solutions - II (Longitudinal Polarization):

• Longitudinal polarization implies:

$$g(x, p, s) = h(x, p, s)\delta(s_x)\delta(s_y)$$

Analytic Solutions - II (Longitudinal Polarization):

• Longitudinal polarization implies:

$$g(x, p, s) = h(x, p, s)\delta(s_x)\delta(s_y)$$

Figure 6: Longitudinal polarization schematic diagram. [SB et. al. PLB 849 (2024) 138464]

• The spin tensor under longitudinal polarization becomes :

$$S^{\lambda,\mu\nu}(x) = \int dP \, dS \, p^{\lambda} s^{\mu\nu} h(x,p,s) \delta(s_x) \delta(s_y) \delta(p_x) \delta(p_y).$$

• The spin tensor under longitudinal polarization becomes :

$$S^{\lambda,\mu\nu}(x) = \int dP \, dS \, p^{\lambda} s^{\mu\nu} h(x,p,s) \delta(s_x) \delta(s_y) \delta(p_x) \delta(p_y).$$

• Parametrically, we can write the spin tensor as:

$$S^{\lambda,\mu\nu} = \sigma(\tau) \, u^{\lambda} \varepsilon^{\mu\nu\alpha\beta} u_{\alpha} S_{z\beta}.$$

• The spin tensor under longitudinal polarization becomes :

$$S^{\lambda,\mu\nu}(x) = \int dP \, dS \, p^{\lambda} s^{\mu\nu} h(x,p,s) \delta(s_x) \delta(s_y) \delta(p_x) \delta(p_y).$$

• Parametrically, we can write the spin tensor as:

$$S^{\lambda,\mu\nu} = \sigma(\tau) \, u^{\lambda} \varepsilon^{\mu\nu\alpha\beta} u_{\alpha} S_{z\beta}.$$

• Similar to transverse case, the spin decouples from the gradient of M(x) and we have a similar solution.

• The symmetry of boost-invariance leads to trivial solutions.

- The symmetry of boost-invariance leads to trivial solutions.
- Let us break boost-invariance but still consider a longitudinal expansion.

- The symmetry of boost-invariance leads to trivial solutions.
- Let us break boost-invariance but still consider a longitudinal expansion.
- We assume the simple case:

$$M = M(t), \qquad S^{3,01}(t,z) = \nu S^{0,01}(t,z) = \nu \sigma(t,z).$$

where, ν is constant.

- The symmetry of boost-invariance leads to trivial solutions.
- Let us break boost-invariance but still consider a longitudinal expansion.
- We assume the simple case:

$$M = M(t), \qquad S^{3,01}(t,z) = \nu S^{0,01}(t,z) = \nu \sigma(t,z).$$

where, ν is constant.

• Then this leads to:

$$\left(\frac{\partial}{\partial t} + \nu \frac{\partial}{\partial z}\right)\sigma(t,z) = -\left(\frac{\partial \ln M(t)}{\partial t}\right)\sigma(t,z).$$

- The symmetry of boost-invariance leads to trivial solutions.
- Let us break boost-invariance but still consider a longitudinal expansion.
- We assume the simple case:

$$M = M(t), \qquad S^{3,01}(t,z) = \nu S^{0,01}(t,z) = \nu \sigma(t,z).$$

where, ν is constant.

• Then this leads to:

$$\left(\frac{\partial}{\partial t} + \nu \frac{\partial}{\partial z}\right)\sigma(t,z) = -\left(\frac{\partial \ln M(t)}{\partial t}\right)\sigma(t,z).$$

• The solution is:

$$\sigma(t,z) = \frac{M_{\rm o}}{M(t)} \sigma_{\rm o}(z - \nu(t - t_{\rm o})).$$

- The symmetry of boost-invariance leads to trivial solutions.
- Let us break boost-invariance but still consider a longitudinal expansion.
- We assume the simple case:

$$M = M(t), \qquad S^{3,01}(t,z) = \nu S^{0,01}(t,z) = \nu \sigma(t,z).$$

where, ν is constant.

• Then this leads to:

$$\left(\frac{\partial}{\partial t} + \nu \frac{\partial}{\partial z}\right)\sigma(t,z) = -\left(\frac{\partial \ln M(t)}{\partial t}\right)\sigma(t,z).$$

• The solution is:

$$\sigma(t,z) = \frac{M_{\rm o}}{M(t)} \sigma_{\rm o}(z - \nu(t - t_{\rm o})).$$

• This solution implies the increase of spin density with decreasing mass, indicating a connection between chiral restoration and spin polarization.

- Gradients of effective mass can act like a source of spin polarization.
- Spin evolution decouples from the source term in a highly symmetric system.
- By giving up boost-invariance, we find a connection between spin polarization and chiral restoration.

- Gradients of effective mass can act like a source of spin polarization.
- Spin evolution decouples from the source term in a highly symmetric system.
- By giving up boost-invariance, we find a connection between spin polarization and chiral restoration.
- A self-consistently determined M(x) should be used to study the evolution.
- Consequence of non-zero π should be explored.

Thank you for your attention!

This work was supported in part by NCN grant No. 2018/30/E/ST2/00432.

Other Aspects

• Let us recall the equation of motion,

$$\left[i\,\partial - \sigma(x) - i\gamma_5\,\pi(x)\right]\psi = 0.$$

• Let us recall the equation of motion,

$$\Big[i\,\partial\!\!\!/ -\sigma(x) - i\gamma_5\,\pi(x)\Big]\psi = 0.$$

• We may examine the case with $\sigma \neq 0$ and, $\pi \neq 0$.

• Let us recall the equation of motion,

$$\left[i \partial \!\!\!/ - \sigma(x) - i \gamma_5 \pi(x)\right] \psi = 0.$$

- We may examine the case with $\sigma \neq 0$ and, $\pi \neq 0$.
- A particularly interesting case of *σ* = *φ* cos (**q** · **r**) and, *π* = *φ* sin (**q** · **r**), known as "*chiral spiral*", can be investigated.