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Features of non-central collisions :

Figure 1: Heavy-ion collision experiments. [LHC Collaboration, JINST 17 (2022) 05, P05009]

◦ Special feature of Non-Central Collisions :
– Large Magnetic Field. [A. Bzdak and, V. Skokov, Phys. Lett. B 710 (2012) 171–174]
– Large Angular Momentum. [F. Becattini et. al. Phys. Rev. C 77 (2008) 204906]
– Particle polarization at small

√
SNN . [STAR Collaboration, Nature 548 62-65, 2017]
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Particle polarization :

Figure 2: Origin of particle polarization. [W. Florkowski et al, PPNP 108 (2019) 103709]

◦ Large orbital angular momentum → local vorticity → spin alignment
[Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005); Phys. Lett. B 629, 20 (2005)]

Experimental evidence, [STAR Collaboration, Nature 548, 62 (2017), Phys. Rev. Lett. 123, 132301 (2019), Phys. Rev.

Lett. 126, 162301 (2021)]

◦ Theoretical models assuming equilibration of spin d.o.f. explain this data.
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Particle polarization :

Figure 3: Observation (L) and prediction (R) of longitudinal polarization.
[Left: Phys. Rev. Lett. 123 132301 (2019); Right: Phys. Rev. Lett. 120 012302 (2018)]

◦ Theoretical models assuming equilibration of spin d.o.f. predict the opposite sign.
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Recent developments :

• Non-local collisions have been considered.
[N. Weickgenannt et. al., Phys. Rev. Lett. 127 052301 (2021); Phys. Rev. D 106, 116021 (2022)]

• Dissipative spin-hydrodynamics has been formulated.
[SB et. al., Phys.Lett.B 814 136096 (2021); Phys. Rev. D 103 014030 (2021)]

• Effect of magnetic field has been acknowledged.
[SB et. al., Phys. Rev. Lett. 129 192301 (2022); R. Singh et. al., Phys. Rev. D 103 094034 (2021)]

• Shear stress has been proposed as a possible solution.
[F. Becattini et. al., Phys. Lett. B 820 136519 (2021); Phys. Rev. Lett. 127 272302 (2021);

S. Y.F. Liu et. al., Phys. Rev. Lett. 125 062301 (2020)]

◦ Ambiguity still remains.
[W. Florkowski et. al., Phys. Rev. C 105 064901 (2022)]

◦ We would like to examine the effect of mean scalar field.
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Roadmap :

• A theory with spin should be constructed from Quantum Field Theory.

• Based on QFT we have to formulate the dynamical equations for macroscopic
observables.

• The connection between the two is established via Wigner function (WF).

QFT WF−→ Kinetic Equation
∫

p−→ Macroscopic theory.
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NJL model in the mean field approximation :

• Let us consider the Lagrangian of the Nambu-Jona-Lasinio (NJL) type
[W. Florkowski, J. Hufner , S.P. Klevansky, L. Neise, Annals Phys. 245 445-463 (1996)]

L= ψ̄
(
i /∂ −m0

)
ψ +G

[ (
ψ̄ψ

)2
+

(
ψ̄iγ5ψ

)2 ]
.

• This leads to the equation of motion (we assume m0 = 0)[
i /∂ − σ(x)− iγ5 π(x)

]
ψ = 0,

where we restrict ourselves to the mean field approximation

σ = ⟨σ̂⟩ = −2G
〈
ψ̄ψ

〉
, π = ⟨π̂⟩ = −2G

〈
ψ̄ iγ5ψ

〉
.
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Transport equation for the Wigner function :

• The Wigner function is defined as

Wαβ(x, k) ≡
∫
d4y eik·y Gαβ

(
x+

y

2
, x−

y

2

)
where Gαβ(x, y) =

〈
ψ̄β(y)ψα(x)

〉
.

• The kinetic equation satisfied by the Wigner function is[
Kµγµ − σ +

iℏ
2

(∂µσ) ∂
µ
k − iγ5π −

ℏ
2
γ5 (∂µπ) ∂

µ
k

]
W(x, k) = 0.

where Kµ = kµ + iℏ
2
∂µ.
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Clifford-algebra decomposition :

• We can decompose the Wigner function in the Clifford-algebra basis as

W= F+ iγ5P+ γµVµ + γµγ5Aµ +
1

2
σµνSµν ,

where σµν = i
2 [γµ, γν ].

• The components are real and obtained by respective traces

F= Tr
[
W
]
, P= −iTr

[
γ5W

]
, Vµ = Tr

[
γµW

]
, Aµ = Tr

[
γ5γ

µW
]
, (...)

• The quantum kinetic equations for the components resulting from the kinetic
equation for the Wigner function are

KµVµ − σF+ πP= −
iℏ
2

[
(∂νσ) (∂

ν
kF)− (∂νπ) (∂

ν
kP)

]
−iKµAµ − σP− πF= −

iℏ
2

[
(∂νσ) (∂

ν
kP) + (∂νπ) (∂

ν
kF)

]
KµF+ iKνSνµ − σVµ + iπAµ = −

iℏ
2

[
(∂νσ) (∂

ν
k Vµ)− (∂νπ) (∂

ν
kAµ)

]
iKµP−Kν S̃

νµ − σAµ + iπVµ = −
iℏ
2

[
(∂νσ) (∂

ν
kA

µ)− (∂νπ) (∂
ν
k Vµ)

]
2iK [µVν] − εµναβKαAβ − πS̃µν + σSµν =

iℏ
2

[
(∂γσ)

(
∂γkS

µν
)
− (∂γπ)

(
∂γk S̃

µν
) ]

where S̃µν = 1
2 ε

µναβSαβ .
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Semiclassical expansion :

• In order to obtain the classical transport equations one makes semiclassical
expansion of the WF components as follows

X= X(0) + ℏX(1) + ℏ2 X(2) + · · ·

• In the classical limit the spin dynamics is described by the behavior of the
axial current density A

µ
(0) whose evolution equation is determined by

considering the transport equations up to the first order in ℏ.
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Kinetic equation for axial current

• In the following we will set π = 0 and σ(0)(x) =M(x).
• M(x) is the in-medium mass of particles, which is treated as externally given

and plays the role of a background scalar field.

• We can obtain the kinetic equation for axial current as
[W. Florkowski, J. Hufner , S.P. Klevansky, L. Neise, Annals Phys. 245 445-463 (1996)]

kα (∂αA
µ) +M (∂αM)

(
∂α(k)A

µ
)
+ (∂α lnM) (kµAα − kαAµ) = 0.

• In the leading order of the semiclassical expansion, one can use the ansatz
[S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, R. R., Phys. Lett. B 814 (2021) 136096]

Aµ(x, k) = 2M

∫
dP dS sµ

[
f+(x, p, s)δ(4)(k − p) + f−(x, p, s)δ(4)(k + p)

]
.

where f±(x, p, s) are the distribution functions for particles (+) and
antiparticles (−) in the extended phase-space of position x, on-shell
momentum pµ = (p0,p) (p2 =M2(x)), and spin sµ = (s0, s).

• Integration measures are: dP = d3p
Ep

, dS =
(

M
πs

)
d4s δ(s · s+ s2) δ(p · s).

• This ansatz satisfies the condition: k · A(x, k) = 0.
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Spin Tensors :

• The hydrodynamic variable describing the dynamics of spin is the spin tensor
Sλµν(x).

• The canonical spin tensor is defined as

Sλµν
can (x) =

1

2
ελµνα

∫
d4kAα(x, k).

• The GLW (de Groot, van Leeuwen, van Weert) spin tensor is defined as
[S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, R. R., Phys. Lett. B 814 (2021) 136096]

Sλ,µν(x) =

∫
dP dS pλsµν [f+(x, p, s) + f−(x, p, s)].

where sαβ = 1
M
εαβµνpµsν is the internal angular momentum tensor

originally introduced by Mathisson.

• Sλµν(x) and Sλµν
can (x) are related by

[W. Florkowski, A. Kumar, R.R., Prog. Part. Nucl. Phys. 108 103709 (2019)]

Sλµν
can = Sλ,µν + Sµ,νλ + Sν,λµ. (⋆)
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Spin Tensors :

• The hydrodynamic variable describing the dynamics of spin is the spin tensor
Sλµν(x).

• The canonical spin tensor is defined as

Sλµν
can (x) =

1

2
ελµνα

∫
d4kAα(x, k).

• The GLW (de Groot, van Leeuwen, van Weert) spin tensor is defined as
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Evolution of Spin Tensor :

• Recall the kinetic equation for the axial current

kα (∂αA
µ) +M (∂αM)

(
∂α(k)A

µ
)
+ (∂α lnM) (kµAα − kαAµ) = 0.

• Multiplying this by kβε βγδ
µ and integrating over k we get evolution equation

for the GLW spin tensor
[S. Bhadury, A. Das, W. Florkowski, Gowthama K. K., R. R., Phys. Lett. B 849 (2024) 138464]

∂αS
α,γδ = (∂α lnM)

(
Sγ,δα − Sδ,γα

)
̸= 0

• As expected, the spin tensor is conserved when M is constant.
• However, if M varies the spin tensor is sourced through its derivative.
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Conservation of Angular Momentum :

• Conservation of total angular momentum implies:

∂λJ
λ,µν = 0.

• Noting J = L+ S, and Lλ,µν = xµTλν − xνTλµ we can write:

∂λS
λ,µν
can = T νµ

can(a) − Tµν
can(a)

• Using the results for the semiclassical expansion of the Wigner function (for
spin-1/2 particles) one finds
[W. Florkowski, A. Kumar, R. Ryblewski, Phys. Rev. C 98 (4) (2018) 044906]

M∂λS
λ,µν
can = ∂λ

(
MSν,λµ

)
− ∂λ

(
MSµ,λν

)
which using ⋆ can be shown to reproduce equation for GLW spin tensor.

• Thus our approach is consistent with conservation of total angular momentum.
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Analytic Solutions
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Analytic Solutions:

Figure 4: Transverse view of non-central collisions. [SB et. al. PLB 849 (2024) 138464]

• Consider a system expanding boost-invariantly along the z-axis:

f(x, p, s) = g(x, p, s)δ(px)δ(py)

• Hence: Sλ,µν(x) =
∫
dP dS pλsµνg(x, p, s)δ(px)δ(py) =⇒ S1,µν = S2,µν = 0.
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Analytic Solutions - I (Transverse Polarization):

• Transverse polarization implies:

g(x, p, s) = h(x, p, s)δ(sx)δ(sz)

Figure 5: Transverse polarization schematic diagram. [SB et. al. PLB 849 (2024) 138464]
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Analytic Solutions - I (Transverse Polarization):

• The spin tensor under transverse polarization becomes :

Sλ,µν(x) =

∫
dP dS pλsµνh(x, p, s)δ(sx)δ(sz)δ(px)δ(py).

• Furthermore, if M =M(t, z), then the only non-zero components of
spin-tensor are S0,01, S3,01, S0,31, S3,31.

• The dynamics of spin is described by:

∂0S
0,01 + ∂3S

3,01 =
∂0M

M
S0,10 +

∂3M

M
S0,13,

∂0S
0,31 + ∂3S

3,31 =
∂0M

M
S3,10 +

∂3M

M
S3,13.
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Analytic Solutions - I (Transverse Polarization):

• Let us consider the following vector basis :

uµ =


t
τ

0
0
z
τ

 , Sµ
x =


0
1
0
0

 , Sµ
y =


0
0
1
0

 , Sµ
z =


0
0
0
1

 .

where τ =
√
t2 + z2.

• This allows us to express the spin tensor parametrically as :

Sλ,µν = σ(τ)uλεµναβ uα Sy,β

• Then we have:
dσ

dτ
+
σ

τ
= 0.

=⇒ σ(τ) = σ(τ0)
τ0

τ
.

i.e. the spin decouples from the change of M .

• The solution is equivalent to conservation law in Bjorken model.
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Analytic Solutions - II (Longitudinal Polarization):

• Longitudinal polarization implies:

g(x, p, s) = h(x, p, s)δ(sx)δ(sy)

Figure 6: Longitudinal polarization schematic diagram. [SB et. al. PLB 849 (2024) 138464]
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Analytic Solutions - II (Longitudinal Polarization):

• The spin tensor under longitudinal polarization becomes :

Sλ,µν(x) =

∫
dP dS pλsµνh(x, p, s)δ(sx)δ(sy)δ(px)δ(py).

• Parametrically, we can write the spin tensor as:

Sλ,µν = σ(τ)uλεµναβuαSzβ .

• Similar to transverse case, the spin decouples from the gradient of M(x) and
we have a similar solution.
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Analytic Solutions - III (Beoynd Boost Invariance):

• The symmetry of boost-invariance leads to trivial solutions.

• Let us break boost-invariance but still consider a longitudinal expansion.

• We assume the simple case:

M =M(t), S3,01(t, z) = ν S0,01(t, z) = ν σ(t, z).

where, ν is constant.

• Then this leads to:(
∂

∂t
+ ν

∂

∂z

)
σ(t, z) = −

(
∂ lnM(t)

∂t

)
σ(t, z).

• The solution is:

σ(t, z) =
M0

M(t)
σ0(z − ν(t− t0)).

• This solution implies the increase of spin density with decreasing mass,
indicating a connection between chiral restoration and spin polarization.
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Summary and Outlook :

• Gradients of effective mass can act like a source of spin polarization.

• Spin evolution decouples from the source term in a highly symmetric system.

• By giving up boost-invariance, we find a connection between spin polarization
and chiral restoration.

• A self-consistently determined M(x) should be used to study the evolution.

• Consequence of non-zero π should be explored.
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Other Aspects
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Chiral Spiral:

• Let us recall the equation of motion,[
i /∂ − σ(x)− iγ5 π(x)

]
ψ = 0.

• We may examine the case with σ ̸= 0 and, π ̸= 0.

• A particularly interesting case of σ = ϕ cos (q · r) and, π = ϕ sin (q · r), known
as “chiral spiral”, can be investigated.
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