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Anomalous transport \ /

Relativistic fluid with one conserved

charge described by conservation By -
laws Yo
no anomalies with anomalies
0, T" =0, 0, T = ”/\Ji\,R,
T
0,J" =0 0 J’LJ“ = Canom "' B,

Non-vanishing values of the conductivities {0y, Oav, T va, T ao | lead to the Chi-
ral Magnetic Effect (CME), the Chiral Separation Effect (CSE) , the Chiral
Vortical Effect (CVE) and the Chiral Vortical Separation Effect (CVSE).

Jv = oywB + oyaBs + oyow,

JA:O-AVB+O-AAB5 __O-VQW.

Everything is tensorial.



Kinetic theory

Consider a gas of non-relativistic fermions with a Berry curvature on the
fermi surface in the presence of electromagnetic field. The Lagrangian of
such system is given by:

L=hk- -t —ep(k)+ep(r) —er- A(r,t) + bk - A, (k)
We can derive the EOMs

= 22U o (k) hk = —¢E — ef x B

where we have defined the Berry curvature

) (R) = gra AL (R) — 5 AL(R)

We see the so-called anomalous Karplus-Luttinger contribution to velocity

Oif +Vuf X+ Vof-p=Clf]

We solve Boltzmann equation. Anomaly is captured by a Berry monopole.
Here everything is non-covariant.



Skin effects

Maxwell's equations give:

VZE — 0_28t2E — ,u(?t.]

The relation between J |
and E is in general nonlocal. \
In the Fourier space ﬁ

J(qu) — O-||(Q7w)E(Q7w) ©

Generically, electric field and current decay exponentially: E, J oc e=%/9()

Skin depth §(w) plays the role of a frequency-dependent system size!

We can probe CME. Can we do the same for CVE?



A paradox

In 1972, 1. Mueller presented calculations that seemed to prove that stress
and heat flux in a gas computed from kinetic theory do not take consistent
frame-covariant expressions. For example the heat flux reads

qu — —TCOH(ZTLT)h'LW@VT .
Now let us change the frame of reference to one rotating with frequency {2

po_ TCOH(QTLT) WAV T
’ 1+ 47(:2011Q2 ’

QTCQOHQ(QTLT )
1+ 47(:201192

q T,ePH 0, T .

A more than 50 years old debate continues on the topic. Guesses exist what
the answer should be.



Relativistic point particle

A particle in a curved spacetime moves along a timelike geodesic. If u is its
velocity, the equation of motion is V,u = 0, or equivalently, u*V,u* = 0.
This means that the velocity is parallelly propagated along the trajectory. This
makes geodesics analogous to straight lines in flat spacetime. Another property
of geodesics, namely that they are curves with the longest proper time between
two given points, is also the straightforward generalization of the flat spacetime
properties. The action for a particle of mass m reads

dxH dx?

S[az“(T)]:/ dr L, L:—m\/—gW T

with fixed initial and final points is extremal for the geodesic. In order to derive
the geodesic equation determined by this extremum, we impose the constraint

gw/uﬂul/ = —1,
which fixes the meaning of 7 as the proper time. Then, the variation of the
action leads to the equation of motion in the standard form
d?xt dx¥ dz?

| = 0.
dT? T dr dr

The parameter 7 is the proper time along the geodesic.



The Hamiltonian H = p,, M — L, for the point particle vanishes identically. This
is a direct consequence of the reparametrization invariance of the action. For a
system with constraints one introduces them by using the Lagrange multipliers.
Following Polyakov the action is

T2 _ _ 1

~ _ dxt dx”
5[5’3“(7)»77(7)] — /7-1 dTL? L = 5 (77 19W dr dr — m277> .

Following the formalism of Hamiltonian mechanics with gauge d.o.f. one has

OL B dz"
p,LL ax,u 77 g,UJ/ dT y
~ d:v“ -1 5
H =pu———L=n[9""pup, +m"].

The Hamilton equations of motion are

dx“_@ﬁ %_ OH

ar T ap dr - own

The variation of the Hamiltonian action with respect to n gives the constraint
equation
g'uyp,upz/ + m2 = 0.

This is a mass shell constraint for a particle.



Consider a domain V) in the phase space P and determine its phase volume as
follows:

Vo = /dql...dqndpl...dpn.

Let z = z(tg) be a point in the phase space representing the system at the initial
moment of time t3. As a result of motion its position at the moment ¢ is z(t).
The Hamiltonian map z — z(t) determines a transformation of the phase space.
Under this transformation, the initial domain Vj transforms into a domain V4.
Let

%:/dql...dqndpl...dpn

be its phase volume. According to the Liouville theorem, the phase volume
remains the same under the Hamiltonian map, that is

Vi =V

For a particle motion in a spacetime the natural choice of the canonically con-
jugated quantities is {p,, x"}, where x* is a position of the particle and p,, is its
velocity /momentum. The time evolution of any phase space function F'(z,p) is

computed as .
F=X|F],

where Xy is the Liouville operator.



Relativistic kinetic theory

It is assumed that the state of the matter in a spacetime (V, g) is represented by
a ‘one-particle distribution function’. This distribution function f is interpreted
as the density of particles at a point x € V that have a momentum p € 1,V
the tangent space to V at x. A distribution function f is a non-negative scalar
function on the so-called phase space PV, a subbundle of the tangent bundle
TV to the spacetime V:

f:PV—-R by (z,p)— f(z,p), with €V, pe P, CT,V.

If (V, g) is a Lorentzian manifold, then the fibre P, at x is such that g, (p,p) <0
and, in a time-oriented frame, p° > 0.

We denote by 6 the 8-volume form on TV, i.e., with 6, and 6, respectively
the volume forms on V and 71,V

0:=0,AG,.

In local coordinates, 6, and 6, are given by

0, = ]detg]% dz’ Adxt A - ANd2", 0, = \detg\% dp” Adp' A -+ Adp™.



The moments of f are functions or tensors on V' obtained by integration on the
fibres of the phase space PV of products of f by tensor products of p with itself.

Moment of order zero This is by definition the integral on the fibre P, of
the distribution function:
= / 10,.
Py

It is the density of particles in spacetime.

First and second moments The first moment of f is a vector field on V
defined by

P@)i= [ oS,

The second moment of the distribution function f is the symmetric 2-tensor on
spacetime given by

TP (2 /f:vppp

It is interpreted as the stress—energy tensor of the distribution f.



The mass shell

The phase space over (V,g), denoted by P,, v, has for fibre P,, , the mass
hyperboloid (also called the mass shell)

Pm,x =P, N {g'uyp,upz/ — _mQ}-

In the case of particles of a given mass m, the volume form 6,, , on the mass
shell P, . is, taking the p; as local coordinates on P,, , (then pY is a function
of x and p;),

 |detg|?
=

O dp' A -+ N dp™.



Vlasov equation

In a curved spacetime, in the absence of nongravitational forces, each particle
follows a geodesic of the spacetime metric g. The differential system satisfied
by a geodesic in the tangent space T'V of a pseudo- Riemannian manifold (V, g)
reads in local coordinates, with A called a canonical affine parameter,

o  dx®

p T d)\ ,
dp” = G%, with G®:=-I¥% p
d\ ’ H ’

where I'Y  are the Christoffel symbols of the metric g. In other words, the
trajectory of a particle in T'V is an element of the geodesic flow generated by the
vector field X = (p, G). In a collisionless model, the physical law of conservation
of particles, together with the invariance of the volume form in T'V under the
geodesic flow imposes that the distribution function f be constant under this
flow, that is, that it satisty the following first-order linear differential equation,
which we call the Vlasov equation:

Xrlfl=p Fyr /\,LPAPM%:O-



Newton-Cartan geometry

Newton-Cartan theory replaces the concept of gravitational force with the cur-
vature of spacetime, similar to general relativity. As a starting point one con-
structs a spacetime interval, which is invariant under the Galilei group, giving
the Newtonian spacetime a metrical structure. The (Galilean transformations
are rewritten as

o — 't = A" x¥ + (H,
where A*, is given by

/M 83}/0 amlo
e - ( 2) -0 3)
v U x'" x'" v )
O Ox0 OxJ

The restrictions of Galilean transformations on covariant and contravariant met-
rics give two degenerate solutions which are Galilei-invariant

(1000\ /0000\
B {0 0 0 0 , |0 100
e =TwTv =109 0 0 0> "™~ 10 0 1 0
\0 0 0 0/ \0 0 0 1/

As such, one can only assign Galilei-invariant lengths to spatial separations
using h,, or to temporal separations employing 7, .



A NC geometry is a d + 1 manifold with coordinates «* with 1 =0,1,...d, a 1-
form usually called the clock form or time metric, a degenerate symmetric tensor
interpreted as an inverse spatial metric, and a covariant derivative (7, h*",V ).
The degeneracy condition manifests as 7,h#*” = 0. In addition, the derivative is
required to obey V7, = V A"’ = 0. We assume that the coordinates, the time
metric, and the spatial metric have units [x*| = L, |1,] = T/L, and |[h*"| =1
respectively.

Now let us introduce a set of observers with associated velocity fields (vy)*,
where 1) labels the observer, normalized such that 7,(vy)* = 1. Any such
velocity field can be expressed as

(U@D)M =" + W,

with v# an arbitrary reference velocity (this is known as the Milne boost). The
reference velocity v# makes it possible to define a metric h,, satistying

huv” =0, hWYh,, +oM 7, =0).

Notice, however, that the ambiguity in the definition of v# implies that the
metric h,, 1s observer-dependent.



A connection associated to the covariant derivative V,, has the general form
1
Pgﬁ = ?}'uaoﬂ'g -+ §h“0 (aahga -+ 85hag — 6’0ha5) -+ h’U“JT(aFﬁ)J :

with F},, an antisymmetric tensor with units [F,,] = T~'. The connection
defined here is in general observer-dependent. However, if we introduce a frame-
dependent gauge field m, such that F,, = 9d,m, — 0,m, and postulate the
transformation

2
(M) =+ Ptby — om0,

with A the gauge parameter, P* = 0¥ — v*1, , the connection transforms such
that it becomes observer-invariant it dr = 0, which is always the case when there
exists a globally defined time function. This is equivalent to setting the anti-
symmetric part of the connection or equivalently torsion to zero. In consequence
Milne boost invariance can be interpreted as the independence of physical phe-
nomena, from the observer describing them. Note that such a connection is not
invariant under U(1) symmetry.



Point particle on NC spacetimes

In order to covariantly formulate kinetic theory on NC spacetimes it is neces-
sary to be able to describe the dynamics of pointlike particles propagating on
such spacetime. We define the reparametrization-, diffeomorphism-, and Milne-
Invariant action

d\
S = @/ —h,, 2" +m /d)\ m, ",
vy

TP

where m is the mass of the particle. Under gauge transformations the La-
grangian transforms as a total derivative. The affinely parametrized (7,2" = 1)
trajectories satisfy the equations of motion

0.
P+ Thsp"i” =0,

where p* = h,,p*p”, and p" is the kinematic momentum satistfying the con-
straint 7,p" = m.



Generalised Noether theorem

For generic geometries the system will not have any Noether charge; however,
our ultimate goal is to construct a kinetic theory where a gas of interacting NC
particles can equilibrate. In that case it is mandatory to restrict the problem
to geometries with at least one time-like Killing transformation Therefore, we
assume the existence of a set of parameters yx = (5 s KA K) such that the
NC data is invariant under the action of 9, ., i.e. 5XKTM = 5XKh HY = 0y UM =
0y My = 0 . The on-shell variation of the point particle Lagrangian 1is

sonle = en L in Ok (5“ oL ) .

Oxt oM O0x™

On the other hand, under a Killing transformation x g, the symmetry variation
of the Lagrangian up to a boundary term is given by

m oo o d
Osy L = ﬁﬂ? a:ﬁi’gKha@ — Whaga; :cﬁx“ngTM +ma® Le,me = _md)\AK .

Comparing ds, £ with 6o, L for &4 = &5 we get the conserved charge

Qr = f?{ﬂ'u +mAg .



Thermal NC spacetimes

NC spacetimes were generalized by adding to the manifold and extra timelike
vector field u#, which without loss of generality can be normalized as u*71, = 1.
As we will see later, such a field can always be defined in the presence of a gas.
For such spaces we could argue that the “Milne symmetry” is spontaneously
broken since u' introduces a distinguished observer having velocity vy, = u.
Notice that this frame is connected to one with arbitrary v* via a boost with
the Milne parameter ¢, = h,,u”. The distinguished spatial metric g,, and
U(1) gauge field A,, obtained by Milne boosting h,, and m, are

2

u2

AM:uM—I—mM—?TM.

Using the extended NC data we can construct covariant derivatives and subse-
quently tensors invariant under all symmetries. NC gases equilibrate on space-
times with such a structure; therefore, we will dub them Thermal Newton-

Cartan (TNC) manifolds.



Equilibrium distribution function

Firstly, we define the Milne- and gauge-invariant temperature, velocity, and
chemical potential

1 [
T = M ="TTgH —— =M A A.
7'“5“’ ¢ S m/T At

We can now write the charges as

L] 1

| 5 has (0 — mu) (pF —mu®) —

Qideal —

The equilibrium distribution function fiqea1 can be written as

fidea,l(fl&‘,p) =N eXp[Qideal]a

where
Qideal — fluﬂ-,u + mA.



Example: 2D rotating gas

Let us first consider the case of a two-dimensional gas. In 2D there is only one
spatial component of the field strength. We define the vorticity scalar as

1
B = §upepwf“” :
where f = dA is Milne-invariant. The viscosities can then be determined sys-
tematically in any coordinate systems; for example, choosing polar coordinates

(p, ¢) we have

)\(e) _ Tcoll(2nT) )\(O) _ QTgollB(QRT)
1+ 472, B2’ 1 +472 B2

The even and odd thermal conductivities equal to

/{(e) _ TCOH(QnT) (o) _ TCQOIIB(QRT)

- 1+72,B% i 1 472,82




Resolution to the paradox

The traditional approach used e.g. by Mueller is to perform the gradient expan-
sion in the frame comoving with the observer, rather than in the frame comoving
with the fluid. In other words, the gradient expansion is performed using v* of
the observer and the corresponding h,, and F),, instead of the Milne-invariant
u", g, and f,,,. At the first-order, this is equivalent to using the Milne-boost-

dependent vorticity scalar B = lfU’OepWF ¥ instead of the Milne-invariant one.

The source of the problem, the];7 is the arbitrariness in the choice of v*. The
paradox can be resolved by fixing v* in terms of some distinguished timelike (in
the sense 7,v* = 1) vector field. For generic gases, there exists only one such
field, namely the fluid velocity u*. Therefore, one can obtain a truly covariant
kinetic theory by setting v* = u*. In some papers the answer was guessed but

the explanation remained obscure.



Conclusions

Kinetic theory can be developed in a frame-
inditfferent way

A systematic tool to include rotations

Coupling to geometry serves as a guiding
principle

Now many rotating semi-classical systems can be
understood



