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What is non – dissipative transport?
(CME,CSE,CVE,QHE,AQHE, …)

Appearance of current (electric, axial, 
energy) that flows without dissipation. 

The conductivities of all known non –
dissipative transport phenomena are given 

by topological invariants. 



Plan 
1. Our tools: Wigner – Weyl calculus in field theory
- Continuum theory 
- Lattice theory (“approximate” version)
- Lettice theory (“precise” version)
2. Applications to quantum Hall effect. 
- Topological expression for the QHE conductivity through 
Green function
- In the presence of inhomogeneities
- non – renormalization by interactions (perturbatively) 
3. Applications to Chiral Magnetic Effect (CME)
- No CME in equilibrium (even at finite T and for non –
homogeneous systems)
- CME is back out of equilibrium: chiral chemical potential 
depending on time
- CME contribution to magnetoconductivity: 
renormalization of the coefficient



Plan 

4. Chiral Separation Effect (CSE). 
- Topological expression for chiral separation effect (CSE)
- Non – renormalization of the CSE by interactions
- Proposal for the experimental observation in magnetic 
Weyl semimetals
5. Precise Wigner – Weyl calculus. 
- Infinite rectangular lattice
- Finite rectangular lattice
- Honeycomb lattice



Wigner – Weyl calculus in continuum theory
Equilibrium, T=0

model with fermions

typical action

Green function



Wigner – Weyl calculus in continuum theory

Weyl symbol of operator 



Wigner – Weyl calculus in continuum theory

Moyal product 

Weyl symbol of the product of two operators  



Wigner – Weyl calculus in continuum theory

model with fermions

typical action

Green function

Groenewold equation



Lattice models 

Example of Wilson 
fermions

In the presence of 
gauge field



Approximate Wigner – Weyl 
calculus for the lattice 
models

Weyl symbol of operator 
(momentum space)



Approximate Wigner – Weyl 
calculus for the lattice models

Weyl symbol of operator 
(momentum space)

Weyl symbol of the product of 
two operators

This identity is
approximate. It is valid for 
the near diagonal operators 



This identity is
approximate. 
It is valid for the near diagonal operators 

partition function

Action 
Lattice model for the description of electrons in crystals:  

The typical Lattice Dirac operator  Q is almost diagonal if 
the external magnetic field strength is much smaller than 
10 000 Tesla while wavelength of external electromagnetic 
field is much larger than
1 nanometer  



This identity is
approximate. 
It is valid for the near diagonal operators 

partition function

Action 
Lattice model for the regularization of continuum quantum 
field theory:  

The typical Lattice Dirac operator  Q is almost diagonal 
when we approach continuum limit of the lattice model.



We can use the approximate Wigner – Weyl calculus 
dealing with any lattice regularized continuum quantum 
field theory and dealing with the lattice models of solid 
state physics if the external magnetic field strength is much 
smaller than 
10 000 Tesla while wavelength of external electromagnetic 
field is much larger than 
1 nanometer  



partition function

Action

Green
function 

Groenewold
equation

Moyal product

Electric current



Finite rectangular lattice: 
M.A. Zubkov (2023)
Journal of Physics A: Mathematical and Theoretical 56 (39), 395201

Precise Wigner – Weyl calculus for the lattice models
(the details at the end of the talk, if time remains)

Infinite rectangular lattice:
I.V. Fialkovsky, M.A. Zubkov (2020)
Nuclear Physics B 954, 114999

Infinite honeycomb lattice: 
R. Chobanyan, M.A. Zubkov
arXiv preprint arXiv:2302.00723



We can use the precise Wigner – Weyl calculus dealing 
with any lattice regularized continuum quantum field theory 
and dealing with the lattice models of solid state physics 
if the external magnetic field strength is of the order of  
10 000 Tesla (unphysical!) while wavelength of external 
electromagnetic field is of the order of 1 nanometer  

Which is more important, we can use this formalism for 
artificial lattices, when magnetic flux through the EFFECTIVE 
lattice cell is compared to 1

And also for the precise treatment of lattice regularized QFT



Applications to Quantum Hall Effect 

Electric current orthogonal to electric field
in the presence of magnetic field

E

J
B

Geim, Novoselov, et all, Nature 438(7065):197-200 graphene



Quantum Hall Effect 

constant magnetic field, no interactions, no disorder
k is Bloch vector, 
|u(k)> is the eigenvector of 
Hamiltonian 

TKNN invariant
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs
Phys. Rev. Lett. 49, 405 (1982)



Intrinsic Anomalous Quantum Hall Effect 
homogeneous system
no magnetic field
no interactions
no disorder

E

J

2D topological insulator

T. Matsuyama, Quantization of 

Conductivity Induced by Topological 

Structure of Energy Momentum Space in 

Generalized

QED in Three-dimensions, Prog. Theor. 

Phys 77, 711 (1987)



Applications to Quantum Hall Effect 
Equilibrium, T=0
non-homogeneous system               
Average electric current                            E

J

B

2+1 D:



Applications to Quantum Hall Effect 
Equilibrium, T=0
non-homogeneous system
Average electric current
3 + 1 D: 

E

J

B   



Quantum Hall Effect Equilibrium, T=0
non-homogeneous system
Average electric current
2+1 D:

smooth deformation of the system

the system without disorder, elastic deformations etc, with 
constant magnetic field
N is not changed! 
If N is known for less complicated system, we know it
also for the more complicated one



The absence of (perturbative) interaction
corrections to  Quantum Hall Effect 

equilibrium, T=0

Electric current orthogonal to electric field
in the presence of magnetic field

E

J
C.X. Zhang, M.A. Zubkov
Annals of Physics 444, 169016

B



Precise Wigner – Weyl calculus 
(finite rectangular lattice)

electric
current
j

electric field E

M.A. Zubkov (2023)
Journal of Physics A: Mathematical and Theoretical 56 (39), 395201



Applications to Chiral Magnetic Effect 
non-homogeneous system, equilibrium, T=0

Average electric current
3 + 1 D: 

D.E. Kharzeev, J. Liao, S.A. Voloshin, G. Wang,
Progress in Particle and Nuclear Physics, Volume 88, 2016, Pages 1-28,



Applications to Chiral Magnetic Effect 
non-homogeneous system, equilibrium, T=0

Average electric current
3 + 1 D: 

topological invariant:

external magnetic field: 

C. Banerjee, M. Lewkowicz, M.A. Zubkov
Physics Letters B, 136457 (2021)

Homogeneous systems: M.A.Zubkov, Physical Review D 93 (10), 
105036 (2016)



Chiral magnetic effect Equilibrium, T=0
non-homogeneous system
Average electric current

smooth deformation of the system

the system without any inhomogeneity
M is not changed! 
We know that in homogeneous systems M = 0
Absence of equilibrium chiral magnetic effect, M.A. Zubkov
Physical Review D 93 (10), 105036

No CME in non – uniform systems at T=0



Applications to Chiral Magnetic Effect 
non-homogeneous system, equilibrium, T>0

Average electric current

topological invariant:

Response of N to chiral chemical potential is zero  

No CME at T>0

The absence of CME at T>0 for homogeneous systems has been reported earlier in 
C.G. Beneventano, M. Nieto, E.M. Santangelo J. Phys. A, 53 (46) (2020), Article 465401, 

C. Banerjee, M. Lewkowicz, M.A. Zubkov
Physics Letters B, 136457 (2021)



Chiral Magnetic Effect  non-equilibrium systems
Keldysh technique  
Green functions (lower sign for fermions)

Keldysh Green function



Keldysh technique and Wigner – Weyl calculus. 
Keldysh Green function

=

Wigner transformation                   = 

Moyal product



Lesser representation

U=                      V = 

=

The inverse Q of Green function 

After Wigner transformation



Response of electric current to external field strength

Electric conductivity tensor for non – homogeneous 
systems

C Banerjee, IV Fialkovsky, M Lewkowicz, CX Zhang, MA Zubkov
Journal of Computational Electronics 20, 2255-2283 (2021)



Lattice model with Wilson fermions
Out of equilibrium

Thermal equilibrium (in Euclidean space - time) 



Lattice model with Wilson fermions
Out of equilibrium

Real time dynamics (in Minkowski space - time) 



Lattice model with Wilson fermions
Out of equilibrium
Keldysh Green function

initial one – particle distribution  



time depending chiral chemical potential   



Response of electric current both to magnetic
field and to chiral chemical potential 

response to chiral chemical potential

two parts of conductivity 



Response of electric current both to magnetic 
field and to chiral chemical potential 

response to chiral chemical potential

two parts of conductivity 

C. Banerjee, M. Lewkowicz, 
M.A. Zubkov
Physical Review D 106 (7), 
074508 (2022)



Out of equilibrium the CME is back!!!

When chiral chemical potential is time dependent, 

the CME conductivity depends on frequency w. In 

the continuum limit the conventional value of CME 

conductivity is reproduced for any ratio w/T. 



CME contribution to magneto – conductivity 
(the today talk by R.Abramchuk at the present conference)



CHIRAL SEPARATION EFFECT

Axial current along magnetic field in the presence of chemical potential

           

                          

A. Metlitski and Ariel R. Zhitnitsky,Phys. Rev. D 72 (2005), 045011

D.E. Kharzeev, J. Liao, S.A. Voloshin, G. Wang,
Progress in Particle and Nuclear Physics, Volume 88, 2016, Pages 1-28,



Lattice Dirac operator Q 

Is 4 x 4 matrix expressed through the Gamma matrices

The system with Fermi surface of arbitrary complicated form

Surface          surrounds the singularities

of  

           

𝛾5 commutes/anticommutes with Q 

in small vicinity  of  

M.Suleymanov, M.Zubkov, Physical Review D 
102 (7), 076019 (2020)



Lattice Dirac operator Q

is 4 x 4 matrix expressed through the Gamma matrices

The system with Fermi surface of arbitrary complicated form

Irrespective of the form of the Fermi surface the value of 

is equal to the number of chiral 

4 – component Dirac fermions  

           

M.Suleymanov, M.Zubkov, Physical Review D 102 (7), 076019 
(2020)



Non – renormalization of CSE 

by interactions in QCD  

Chemical potential is counted from the level, where

the CSE disappears  (the position of the phase transition)

Surface          surrounds the singularities

of  

           

The Green function entering this expression is the complete

one  with interactions taken into accountM.Zubkov,  R.Abramchuk Physical Review D 107 (9), 094021 (2023)



T

𝜇

Quark – gluon plasma

Color superconductivity ?
Restored 
chiral 
symmetry?

Hadron gas
Nuclear
matter

LHC
RHIC

SPS

NICA

FAIR

300 MeV

160 MeV

Quarkyonic 
Matter?

Neutron stars

Chemical potential is counted from the level, where

the CSE disappears  (the position of the phase transition)



Non – renormalization of CSE by

interactions in magnetic Weyl  semimetals

Weyl fermions near Weyl points in momentum space 



Non – renormalization of CSE by

interactions in magnetic Weyl  semimetals

Chemical potential is counted from the level of Weyl point 

Surface          surrounds the positions of Weyl points   

           

The Green function entering this expression is the complete

one  with interactions taken into account

                          

M A Zubkov 2024 J. Phys.: Condens. Matter 36 415501



Proposal for experimental detection

of CSE in magnetic Weyl  semimetals

Contribution to QHE conductivity due to the CSE  



Precise Wigner – Weyl calculus. Finite rectangular lattice

Weyl symbol of operator



Precise Wigner – Weyl calculus. Finite rectangular lattice

Weyl symbol of operator for continuous arguments



Properties of Weyl symbol

translation to one lattice spacing



Applications: QHE 

electric
current
j

electric field E

M.A. Zubkov (2023)
Journal of Physics A: Mathematical and Theoretical 56 (39), 395201



Precise Wigner – Weyl calculus. INFINITE rectangular lattice
N → infinity

Weyl symbol of operator  
(momentum space becomes continuous)



Properties of Weyl symbol N → infinity

translation to one lattice spacing



Applications: QHE 

electric
current
j

electric field E

N → infinity

I.V. Fialkovsky, M.A. Zubkov (2020)
Nuclear Physics B 954, 114999



Precise Wigner – Weyl calculus. INFINITE HONEYCOMB lattice
N → infinity 

coordinate space

Momentum space 



Precise Wigner – Weyl calculus. INFINITE HONEYCOMB lattice
N → infinity

Weyl symbol of operator 



Properties of Weyl symbol N → infinity



Applications: QHE 

electric
current
j

electric field E

N → infinity

R. Chobanyan, M.A. Zubkov
arXiv preprint arXiv:2302.00723



We can use the precise Wigner – Weyl calculus dealing 
with any lattice regularized continuum quantum field theory 
and dealing with the lattice models of solid state physics 
if the external magnetic field strength is of the order of  
10 000 Tesla (unphysical!) while wavelength of external 
electromagnetic field is of the order of 1 nanometer  

Which is more important, we can use this formalism for 
artificial lattices, when magnetic flux through the EFFECTIVE 
lattice cell is compared to 1



Conclusions

• Wigner – Weyl calculus allows to represent in 

compact form the conductivities of non –

dissipative transport phenomena in non –

uniform systems.

• Equilibrium systems at zero temperature: QHE 

conductivity is given by topological invariant 

composed of the Wigner transformed two-point 

Green functions. This expression is not 

renormalized by interactions (perturbatively)



Conclusions

• Equilibrium systems at finite temperatures: CME 

response of electric current to magnetic field is 

the topological invariant in phase space→ the 

equilibrium CME is absent

• Out of equilibrium the CME is back if chiral 

chemical potential depends on time and if the 

corresponding frequency tends to zero (i.e. the 

system is approaching to equilibrium). 

• The CME contribution to magnetoresistance as 

calculated using Keldysh technique is given by 

the standard expression (though with the 

renormalized expression for the relaxation time). 



Conclusions

• CSE conductivity is given by the topological 

invariant. It is not renormalized by interactions 

both in QCD and in Weyl semimetals.

• The way to observe experimentally the CSE in 

magnetic Weyl semimetals is proposed based on 

the observation of the QHE conductivity.  

• Precise Wigner – Weyl calculus is built for the 

lattice models, which allows to investigate the 

systems with artificial lattices (when magnetic 

flux through the lattice cell becomes large) –

these are the systems that possess Hofstadter 

butterfly. 
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