



# Chiral transport phenomena in core-collapse supernovae



### **Di-Lun Yang**

Institute of Physics, Academia Sinica

(The 8th International Conference on Chirality, Vorticity and Magnetic Field in Quantum Matter, Timisoara, July 23, 2024)



### Exotic transport in chiral matter





## Where to find chiral transport in the real world?

Nuclear physics : relativistic heavy ion collisions

Review : D. Kharzeev, et.al, Prog. Part. Nucl. Phys. 88, 1 (2016)

Condensed matter : Weyl semimetals

Textbook : E. V. Gorbar, et.al, "Electric Properties of Dirac and Weyl Semimetals" (World Scientific, 2021)

Astrophysics : core-collapse supernovae

Review : K. Kamada, N. Yamamoto, DY, Prog. Part. Nucl. Phys. 129 (2023) 104016





Borisenko et al., Phys. Rev. Lett. 113, 027603 (2014)





## Evolution of core-collapse supernovae (CCSN)



H.-Th. Janka, arXiv:1702.08713



### Parity violation & weak interaction



http://physics.nist.gov/GenInt/Parity/cover.html

 $n \to p + e_{\rm L} + \bar{\nu}_{\rm R}$ 



Lee & Yang (th) 1956



Wu et al., (exp) 1957

- Neutrinos play an important role for CCSN and interact with matter via the weak int.
- Intrinsic parity violation for weak interaction : essential for chiral effects
- What will be the transport properties for "chiral" leptons under parity (chirality) violation?

ultrarelativistic (nearly massless) neutrinos & electrons considered ; no BSM



### Chiral effects on dense stars?

- Three long-standing puzzles :
- Pulsar kicks : the origin of momentum asymmetry for neutron stars? v~10<sup>2</sup> km/s
   A. Lyne, D. Lorimer, Nature 369, 127 (1994).
   V. Kaspi, et al., Nature 381, 584 (1996).
- Magnetars : the origin of strong & stable magnetic fields?  $B \sim 10^{15}$  G review: A. K. Harding, D. Lai, Rept. Prog. Phys. 69, 2631 (2006)
- Explosions of CCSN with the observed energy?
- Chiral effects as a "microscopic" mechanism may provide possible explanations (qualitatively) in a self consistent framework. (disclaimer : not the only solution)
- Radiation hydrodynamics : e.g. S. W. Bruenn, Astrophys. Jl. Suppl. 58 (1985) 771.
   magneto-hydrodynamics (MHD) + relativistic kinetic theory (Boltzmann eq.) matter (e, n, p) in equilibrium radiation (v) out of equilibrium
- Constructing chiral radiation hydrodynamics : chiral magneto-hydrodynamics (ChMHD) + chiral kinetic theory (CKT) review : K. Kamada, N. Yamamoto, DY, PPNP 129 (2023) 104016



### Chiral radiation transport equation

• CKT for neutrinos :  $q \cdot Df_q^{(\nu)} =$ 

$$Df_{q}^{(\nu)} = (1 - f_{q}^{(\nu)})\Gamma_{q}^{<} - f_{q}^{(\nu)}\Gamma_{q}^{>},$$

Boltzmann eq. in the inertial frame

collision term with quantum corrections N. Yamamoto & DY, APJ 895 (2020), 1

• Neutrino absorption :  $\bar{\Gamma}_q^{\leq} \approx \bar{\Gamma}_q^{(0)\leq} + \bar{\Gamma}_q^{(\omega)\leq}(q \cdot \omega) + \bar{\Gamma}_q^{(B)\leq}(q \cdot B),$  $\nu_{\rm L}^{\rm e}(q) + {\rm n}(k) \rightleftharpoons {\rm e}_{\rm L}(q') + {\rm p}(k')$ 





 $\begin{aligned} \text{analytic expressions :} \quad \bar{\Gamma}_q^{(0)>} \approx \frac{\left(g_V^2 + 3g_A^2\right)}{\pi} G_F^2(q \cdot u)^3 (1 - f_{0,q}^{(e)}) \left(1 - \frac{3q \cdot u}{Mc^2}\right) \frac{n_n - n_p}{1 - e^{\beta(\mu_p - \mu_n)}}, \\ \bar{\Gamma}_q^{(\omega)>} \approx \frac{\left(g_V^2 + 3g_A^2\right)}{2\pi M} G_F^2(q \cdot u)^2 (1 - f_{0,q}^{(e)}) \left(\frac{2}{E_i} + \beta f_{0,q}^{(e)}\right) \frac{n_n - n_p}{1 - e^{\beta(\mu_p - \mu_n)}}, \\ \bar{\Gamma}_q^{(B)>} \approx \frac{\left(g_V^2 + 3g_A^2\right)}{2\pi M} G_F^2(q \cdot u) (1 - f_{0,q}^{(e)}) \left(1 - \frac{8q \cdot u}{3Mc^2}\right) \frac{n_n - n_p}{1 - e^{\beta(\mu_p - \mu_n)}}. \\ \bar{\Gamma}_q^{(0)>} \text{ : S. Reddy, M. Prakash, J. M. Lattimer, PRD58:013009,1998} \end{aligned}$ 



### Neutrino flux driven by magnetic fields

Energy-momentum tensor & neutrino current :

$$\begin{split} T^{\mu\nu}_{(\nu)} &= \int_{q} 4\pi \delta(q^{2}) \Big( q^{\mu} q^{\nu} f_{q}^{(\nu)} - q^{\{\mu} S^{\nu\}\rho}_{q} \mathcal{D}_{\rho} f_{q}^{(\nu)} \Big) \,, \\ J^{\mu}_{(\nu)} &= \int_{q} 4\pi \delta(q^{2}) \Big( q^{\mu} f_{q}^{(\nu)} - S^{\mu\rho}_{q} \mathcal{D}_{\rho} f_{q}^{(\nu)} \Big) \,, \qquad \mathcal{D}_{\mu} f_{q}^{(\nu)} \equiv D_{\mu} f_{q}^{(\nu)} - \mathcal{C}_{\mu} [f_{q}^{(\nu)}] \end{split}$$

The momentum kick from neutrinos near equilibrium :

N. Yamamoto & DY, PRD 104, 123019 (2021)

$$\Delta T_{\nu}^{i0} = -\kappa (\nabla \cdot v) \mu_{\nu} B^{i}, \quad \kappa = \frac{1}{72\pi M G_{\rm F}^{2}(g_{\rm V}^{2} + 3g_{\rm A}^{2})} \frac{{\rm e}^{2\beta(\mu_{\rm n} - \mu_{\rm p})}}{n_{\rm n} - n_{\rm p}}$$

$$for \ \mu_{\rm n} - \mu_{\rm p} \gg T = \beta^{-1}.$$

(momentum con.)

\* Effective CME (w/o  $\mu_5$ ):  $\Delta T_{\rm e}^{i0} = \mu_{\rm e} \Delta J_{\rm e}^i$ 

 $\implies \Delta J_{\rm e}^i = \xi_B B^i$ , (effective CME out of equilibrium)

$$\xi_B = -\kappa (oldsymbol{
abla} \cdot oldsymbol{v}) rac{\mu_
u}{\mu_{
m e}} \,.$$
 (effective  $\mu_5$ )

see also

*e*, *N* 

A. Vilenkin, Astrophys. J. 451, 700 (1995) M. Kaminski et al., PLB 760, 170 (2016) K. Fukushima, C. Yu, arXiv: 2401.04568

momentum kick



### Shock revival by neutrino heating

Heating by non-equilibrium neutrinos :



How to obtain chiral effects from non-equilibrium neutrinos in the gain region?
 We can solve the chiral kinetic equation for left-handed electrons near equilibrium with neutrino radiation.



### Effective CME from neutrinos out of equilibrium

N. Yamamoto, DY, Effective CME from neutrino radiation (far from equilibrium) : PRL 131, 012701 (2023)

$$j_{B}^{\mu}(x) \approx e^{2} \int \frac{\mathrm{d}^{4}q}{(2\pi)^{3}} \frac{\delta(q^{2})}{q_{0}} \left( B^{\mu}q \cdot \partial_{q} - q \cdot B\partial_{\bar{q}}^{\mu} \right) \delta f_{\mathrm{W}}^{(\mathrm{e})} = \xi_{B}B^{\mu},$$
  

$$\delta f_{\mathrm{W}}^{(\mathrm{e})}(q,x) = -\frac{1}{q_{0}} \int_{0}^{\Delta t} \mathrm{d}t_{0}'F_{\mathrm{W}}(q,x')|_{\mathrm{c}},$$
  

$$F_{\mathrm{W}} \approx \frac{(q \cdot u)^{3}}{\pi} (g_{\mathrm{V}}^{2} + 3g_{\mathrm{A}}^{2})G_{\mathrm{F}}^{2}(n_{\mathrm{p}} - n_{\mathrm{n}}) \left[ \frac{\bar{f}^{(\mathrm{e})}(1 - f^{(\nu)})}{1 - \mathrm{e}^{\beta(\mu_{\mathrm{n}} - \mu_{\mathrm{p}})}} + \frac{(1 - \bar{f}^{(\mathrm{e})})f^{(\nu)}}{1 - \mathrm{e}^{\beta(\mu_{\mathrm{p}} - \mu_{\mathrm{n}})}} \right].$$

Approximate upper bounds (in the gain region) :

$$\begin{array}{l} \xi_B^{\text{tot}} \approx -0.5 \,\text{MeV} \text{ for } \Delta t = 0.1 \text{ s} \\ \hline B \sim 10^{15-16} \text{ G} \\ \hline B \sim 10^{15-16} \text{ G} \\ \hline for \\ v_{\text{kick}} \sim \frac{|T_{B,\text{tot}}^{i0}|}{\rho_{\text{core}}} \approx \left(\frac{eB}{10^{13-14} \text{ G}}\right) \text{ km/s} . \end{array}$$

see also A. Vilenkin, Astrophys. J. 451, 700 (1995).

B

(a)  $j_B = 0$ 

 $\Delta t / \implies \xi_B /$ 

(neutrino emission time)

(b)  $\boldsymbol{j}_B \neq \boldsymbol{0}$ 

B



1

### Chiral plasma instability

Chiral plasma instability (CPI) :

M. Joyce, M. E. Shaposhnikov, PRL 79, 1193 (1997) Y. Akamatsu, N. Yamamoto, PRL 111, 052002 (2013)

Anomalous Maxwell's eq. :

$$\partial_t \boldsymbol{B} = -\boldsymbol{\nabla} \times \boldsymbol{E}, \quad \boldsymbol{\nabla} \times \boldsymbol{B} = \eta^{-1} \boldsymbol{E} + \boldsymbol{\xi}_B \boldsymbol{B}.$$

$$\implies \frac{\partial \boldsymbol{B}}{\partial t} = \eta \nabla^2 \boldsymbol{B} + \eta \nabla \times (\xi_B \boldsymbol{B})$$
  
diffusion CME (instability)



Y. Akamatsu, N. Yamamoto, PRD 90, 125031 (2014)

Unstable modes at long wavelength :  $\delta B \propto e^{\sigma t + i \mathbf{k} \cdot \mathbf{x}}$ 

 $\sigma = \eta k (\xi_B - k)$  ( $\sigma > 0$  for small k, long wavelength)

 $dH_{\rm tot}$ 

dt

$$\frac{dH_{\text{tot}}}{dt} = 0, \qquad N_5 \equiv \int d^3 x \, n_5, \quad H_{\text{mag}} \equiv \int d^3 x \, \boldsymbol{A} \cdot \boldsymbol{B}. \qquad (\text{linking of magnetic fluxes})$$
$$H_{\text{tot}} \equiv N_5 + \frac{H_{\text{mag}}}{4\pi^2}, \qquad \text{exchange btw the (effective) axial charge & magnetic helicity}$$

Y. Hirono, D. Kharzeev, Y. Yin, PRD 92, 125031 (2015)



### Local ChMHD simulations

## ChMHD : energy-momentum & charge conservation + helicity conservation

J. Matsumoto, N. Yamamoto, DY, PRD 105, 123029 (2022) See also Y. Masada et al., PRD 98, 083018 (2018)

Local simulations :

resistivity :  $\eta = 1$  viscosity :  $\nu = 0.01$ 

in the units of  $100 \,\mathrm{MeV} = 1$ 

#### TABLE I. Summary of the simulation runs.

| Name    | L              | $\xi_{B,\mathrm{ini}}$ | $	au_{\mathrm{CPI}}$ |
|---------|----------------|------------------------|----------------------|
| Model 1 | $8\times 10^2$ | $10^{-1}$              | $4 \times 10^2$      |
| Model 2 | $8\times 10^3$ | $10^{-2}$              | $4\times 10^4$       |
| Model 3 | $8\times 10^4$ | $10^{-3}$              | $4 \times 10^6$      |
| Model 4 | $8\times 10^5$ | $10^{-4}$              | $4 \times 10^8$      |
| Model 5 | $8\times 10^6$ | $10^{-5}$              | $4 \times 10^{10}$   |





#### Inverse cascade

Inverse cascade : opposite to the direct energy cascade for turbulence in 3D





### Neutrino spin Hall effect

■ Wigner functions up to  $\mathcal{O}(\hbar)$ ,  $\mathcal{O}(\bar{\Sigma}_{\chi})$ , and  $\mathcal{O}(\Sigma_{\chi}^{\leq})$ : N. Yamamoto, DY, PRD 109, 056010 (2024)

$$\mathcal{W}_{\chi}^{<\mu} = 2\pi \left[ \delta(\tilde{q}^2) \left( \tilde{q}^{\mu} + \chi \hbar S_{\tilde{q}}^{\mu\nu} \tilde{\mathcal{D}}_{\nu} \right) + \frac{\chi \hbar}{2} \delta'(\tilde{q}^2) \epsilon^{\mu\nu\rho\sigma} \tilde{q}_{\nu} \left( F_{\rho\sigma} + \Delta_{[\rho} \bar{\Sigma}_{\chi\sigma]} \right) \right] f_{\chi},$$

 $\tilde{\mathcal{D}}_{\rho} = \mathcal{D}_{\rho} + (\Delta_{\nu} \bar{\Sigma}_{\chi\rho}) \partial_{q}^{\nu} - (\partial_{q\nu} \bar{\Sigma}_{\chi\rho}) \partial^{\nu}, \quad \tilde{q}_{\mu} = q_{\mu} - \bar{\Sigma}_{\chi\mu}.$ 

e.g., gradient of thermal mass : effective EM fields

 $\implies$  The chiral kinetic equation is also modified.

Neutrino self-energy :  $\frac{\nu_{e}}{\sqrt{2}}e^{-} \frac{\nu_{e}}{\sqrt{2}} + \frac{\sqrt{2}}{\nu_{e}}e^{-} \frac{\nu_{e}}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{2}}e^{-} \frac{\sqrt{2}}{2}\left[\left(1 + 4\sin^{2}\theta_{W}\right)N_{e} - N_{n} + \left(1 - 4\sin^{2}\theta_{W}\right)N_{p}\right].$   $\frac{\bar{\Sigma}_{L}^{\mu}}{\sqrt{2}} = Vn^{\mu} + \mathcal{O}(\hbar), \quad V = \frac{G_{F}}{\sqrt{2}}\left[\left(1 + 4\sin^{2}\theta_{W}\right)N_{e} - N_{n} + \left(1 - 4\sin^{2}\theta_{W}\right)N_{p}\right].$ D. Notzold and G. Raffelt, Nucl. Phys. B 307 (1988) 924

 $\Rightarrow \text{ neutrino spin Hall effect : } J^{\mu}_{\text{SHE}} = \hbar \epsilon^{\mu\nu\rho\sigma} \ell_{\nu} n_{\sigma}(\partial_{\rho}V) ,$ anisotropic neutrino distribution:  $\ell_{\nu} = \int \frac{d^4q}{(2\pi)^3} \frac{\delta(q_0 - |\boldsymbol{q}|)}{2q_0} \partial_{q\nu} f^{(\nu)}(q) .$ 

Spin polarization from vorticity & shear corrections for massive quarks of O(g<sup>2</sup>)
 S. Fang, S. Pu, DY, PRD 109, 034034 (2024)

![](_page_14_Picture_0.jpeg)

### Summary & outlook

- Summary
- The chiral effect stemming from "parity violation" should be included for leptonic transport with the weak interaction.
- Chiral effects with magnetic fields : "effective CME" induced by neutrino radiation, chiral plasma instability, helicity conservation, inverse cascade.
- Relevant to pulsar kicks, magnetars, and explosion dynamics of CCSN.
- Outlook
- Ultimate goal : global simulations for chiral radiation hydrodynamics with consistent inclusion of the effective CME from neutrino radiation.
- Chiral effects from vorticity (chiral vortical effect), temperature/chemical-potential gradients (spin-Hall effect), etc.
- Other applications of chiral effects to dense astrophysical systems?

![](_page_15_Picture_0.jpeg)

### Thank you!

![](_page_16_Picture_0.jpeg)

### Generation of chirality imbalance

Electron capture process in supernovae :

A. Ohnishi, N. Yamamoto, 2014, arXiv:1402.4760

![](_page_16_Figure_4.jpeg)

D. Grabowska, D.B. Kaplan, S. Reddy, PRD 91 (8) (2015) 085035

an innate lefthander

Back-reaction from non-equilibrium neutrinos.

$$\nu_{\mathrm{L}}^{\mathrm{e}}(q) + \mathrm{n}(k) \rightleftharpoons \mathrm{e}_{\mathrm{L}}(q') + \mathrm{p}(k')$$

(relativistic electrons/neutrinos will be treated as massless pts.)

![](_page_17_Picture_0.jpeg)

### Chiral kinetic theory from QFT

• Wigner functions: 
$$\dot{S}_{\rm L}^{<}(q,x) \equiv \int_{y} e^{-\frac{iq \cdot y}{\hbar}} \langle \psi_{\rm L}^{\dagger}(x,y/2)\psi_{\rm L}(x,-y/2)\rangle \equiv \sigma^{\mu} \mathcal{L}_{\mu}^{<}(q,x)$$

see e.g. Y. Hidaka, S. Pu, DY, PRD 95, 091901 (2017) review : Y. Hidaka S. Pu, Q, Wang, DY, PPNP 127 (2022) 103989

Perturbative solution up to  $\mathcal{O}(\hbar)$ : (~ $\partial/q$ : gradient expansion)

$$\mathcal{L}^{<\mu} = 2\pi \Big[ \delta(q^2) \big( q^{\mu} - \hbar S^{\mu\nu}_{(n)} \mathcal{D}_{\nu} \big) - \hbar \tilde{F}^{\mu\nu} q_{\nu} \delta'(q^2) \Big] f_{\mathrm{L}} \,,$$
$$\mathcal{D}_{\mu} \mathcal{L}^{<}_{\nu} \equiv \big( \nabla_{\mu} - \Gamma^{\lambda}_{\mu\rho} q^{\rho} \partial_{q\lambda} + F_{\rho\mu} \partial^{\rho}_{q} \big) \mathcal{L}^{<}_{\nu} - \Sigma^{<}_{\mu} \mathcal{L}^{>}_{\nu} + \Sigma^{>}_{\mu} \mathcal{L}^{<}_{\nu} \,, \ S^{\mu\nu}_{(n)} = \frac{\epsilon^{\mu\nu\alpha\beta} q_{\alpha} n_{\beta}}{2q \cdot n} .$$

• Chiral kinetic equation :

$$0 = \delta \left( q^2 - \hbar F_{\alpha\beta} S_{(n)}^{\alpha\beta} \right) \left\{ \left[ q \cdot \mathcal{D} - \hbar \left( \frac{S_{(n)}^{\mu\nu} F_{\mu\rho} n^{\rho}}{q \cdot n} + \left( D_{\mu} S_{(n)}^{\mu\nu} \right) \right) \mathcal{D}_{\nu} - \hbar S_{(n)}^{\mu\nu} \left( \nabla_{\mu} F_{\nu}^{\lambda} - q^{\rho} R_{\rho\mu\nu}^{\lambda} \right) \partial_{q\lambda} \right] f_{\mathrm{II}} - \hbar \frac{\epsilon^{\mu\nu\alpha\beta} n_{\nu}}{2q \cdot n} \left( (1 - f_{\mathrm{L}}) \Delta_{\alpha}^{>} \Sigma_{\beta}^{<} - f_{\mathrm{L}} \Delta_{\alpha}^{<} \Sigma_{\beta}^{>} \right) \right\}.$$

$$\bullet \quad \text{Current and EM tensor}: \quad J^{\mu} = 2 \int_{q} \mathcal{L}^{<\mu}, \quad T^{\mu\nu} = \int_{q} \left( \mathcal{L}^{<\mu} q^{\nu} + \mathcal{L}^{<\nu} q^{\mu} \right).$$

$$\bullet \quad \mathbf{18}$$

![](_page_18_Picture_0.jpeg)

### Chiral kinetic equation for electrons

Chiral kinetic equation for left-handed electrons near equilibrium:

$$f_{\rm L}^{\rm (e)} = \bar{f}_{\rm L}^{\rm (e)} + \delta f_{\rm L}^{\rm (e)}$$

$$\Rightarrow \Box_q f_{\rm L}^{\rm (e)} \approx -q \cdot n \hat{\tau}_{\rm EM}^{-1} \delta f_{\rm L}^{\rm (e)} - F_{\rm W},$$

$$\Box_q f_{\chi}^{\rm (e)} = \left(q^{\mu} + \chi \hbar \frac{S_q^{\mu\nu} eF_{\mu\rho} n^{\rho}}{q \cdot n}\right) \Delta_{\mu} f_{\chi}^{\rm (e)}, \qquad \Delta_{\mu} = D_{\mu} + eF_{\lambda\mu} \partial_q^{\lambda}$$

$$\chi = \pm 1 \text{ for R/L}.$$

- collision term with neutrinos :  $F_{\rm W} = \bar{f}_{\rm L}^{\rm (e)} \Gamma_{\rm W}^{>} (1 \bar{f}_{\rm L}^{\rm (e)}) \Gamma_{\rm W}^{<}$
- Modified relaxation-time approx. :  $f_{\rm L}^{\rm (e)} = \bar{f}_{\rm L}^{\rm (e)} + \delta f_{\rm LEM}^{\rm (e)} + \delta f_{\rm LW}^{\rm (e)}$ ,

$$\begin{aligned} \mathcal{O}(\delta f_{\rm LEM}^{\rm (e)}) &\approx \mathcal{O}(\tau_{\rm EM}/L) \\ \mathcal{O}(\delta f_{\rm LW}^{\rm (e)}) &\approx \mathcal{O}(\tilde{\epsilon}^4 G_F^2) \end{aligned}$$

![](_page_19_Picture_0.jpeg)

### Effective CME from neutrino radiation

• Kinetic equation breaks into :  $\Box_q \bar{f}_{L}^{(e)} \approx -q \cdot n \hat{\tau}_{EM}^{-1} \delta f_{LEM}^{(e)}$ ,

$$\Box_q \delta f_{\mathrm{W}}^{(\mathrm{e})} \approx (1 - \bar{f}_{\mathrm{L}}^{(\mathrm{e})}) \Gamma_{\mathrm{W}}^{<} - \bar{f}_{\mathrm{L}}^{(\mathrm{e})} \Gamma_{\mathrm{W}}^{>} = -F_{\mathrm{W}}.$$

Neutrino absorption on nucleons :

$$F_{\rm W} \approx \frac{(q \cdot u)^3}{\pi} \left( g_{\rm V}^2 + 3g_{\rm A}^2 \right) G_{\rm F}^2(n_{\rm p} - n_{\rm n}) \left[ \frac{\bar{f}_q^{\rm (e)}(1 - f_q^{(\nu)})}{1 - \mathrm{e}^{\beta(\mu_{\rm n} - \mu_{\rm p})}} + \frac{(1 - \bar{f}_q^{\rm (e)})f_q^{(\nu)}}{1 - \mathrm{e}^{\beta(\mu_{\rm p} - \mu_{\rm n})}} \right]$$

• Ignoring electric fields :  $q \cdot \partial \delta f_{\rm W}^{
m (e)} \approx -F_{
m W}$ 

![](_page_19_Figure_7.jpeg)

$$\delta f_{\mathrm{W}}^{(\mathrm{e})}(q,x) = -\frac{1}{q_0} \int_0^{x_0} \mathrm{d}x'_0 F_{\mathrm{W}}(q,x')|_{\mathrm{c}},$$
$$|_{\mathrm{c}} = \{x'^{\mu}_{\perp} = x^{\mu}_{\perp}, x'^{\mu}_{\parallel} = x^{\mu}_{\parallel} - \bar{q}^{\mu}(x_0 - x'_0)/q_0\}.$$

Effective CME :

$$j_B^{\mu} \approx \hbar e^2 \int \frac{\mathrm{d}^4 q}{(2\pi)^3} \frac{\delta(q^2)}{q_0} \left( B^{\mu} q \cdot \partial_q - q \cdot B \partial_{\bar{q}}^{\mu} \right) \delta f_{\mathrm{W}}^{(\mathrm{e})}$$

![](_page_20_Picture_0.jpeg)

### Chiral magnetohydrodynamics

Chiral magnetohydrodynamics (ChMHD) equations:

$$\begin{aligned} \frac{\partial\rho}{\partial t} + \nabla \cdot (\rho v) &= 0 , \qquad (17) \\ \frac{\partial}{\partial t} J^{\mu} &= 0 \\ \frac{\partial}{\partial t} (\rho v) + \nabla \cdot \left[ \rho v v - BB + \left( P + \frac{B^2}{2} \right) \mathbf{I} \right] &= S , \qquad (18) \\ \frac{\partial}{\partial t} \left( \frac{1}{2} \rho v^2 + \frac{1}{\Gamma - 1} P + \frac{B^2}{2} \right) + \nabla \cdot \left[ \left( \frac{1}{2} \rho v^2 + \frac{\Gamma}{\Gamma - 1} P \right) v + E \times B \right] \\ \frac{\partial}{\partial t} \left( \frac{1}{2} \rho v^2 + \frac{1}{\Gamma - 1} P + \frac{B^2}{2} \right) + \nabla \cdot \left[ \left( \frac{1}{2} \rho v^2 + \frac{\Gamma}{\Gamma - 1} P \right) v + E \times B \right] \\ \frac{\partial}{\partial t} \left( \frac{\partial B}{\partial t} = \nabla \times (v \times B) + \eta \nabla^2 B + \eta \nabla \times (\xi_B B) , \qquad (19) \\ \frac{\partial}{\partial t} \left( \frac{\partial B}{\partial t} = \nabla \times (v \times B) + \eta \nabla^2 B + \eta \nabla \times (\xi_B B) , \qquad (20) \\ \frac{\partial}{\partial t} \frac{\partial n_{5,\text{eff}}}{\partial t} &= \frac{1}{2\pi^2} E \cdot B , \qquad (21) \\ \end{array} \end{aligned}$$

a

J. Matsumoto, N. Yamamoto, DY, PRD 105, 123029 (2022)

See also Y. Masada et al., PRD 98, 083018 (2018) A. Brandenburg et al., AJL 845, L21 (2017)

21

![](_page_21_Picture_0.jpeg)

### Direct & inverse energy cascades

- 3D supernova simulations are more difficult to achieve explosion than 2D
- Turbulence in 3D : direct energy cascade

![](_page_21_Figure_4.jpeg)

Turbulence in 2D : inverse energy cascade

![](_page_21_Picture_6.jpeg)

Chiral effects in 3D : inverse cascade