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Motivations:

▶ Do we understand the surprising success of local-equilibrium (LEQ) assumption (A.
Palermo’s talk)

▶ How can we simplify semi-classical spin hydrodynamics (a made-up name for
formulation of [Weickgenannt et al. (2022)])

Outline:

▶ What is semi-classical (ideal)-spin hydrodynamics?

▶ The poor man’s toolbox (I): linearized spin hydro

▶ The poor man’s toolbox (II): conformal Bjorken flow

▶ Final words
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Recap: surprising success of the local-equilibrium (LEQ) assumption



Fig. by Chun Shen (https://u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion-collisions/)
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Parent cell’s field (in spacetime) −→ final hadron’s properties (in phase space)

[Schenke et al. (2010)]
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Gradients of the fields of parent fluid cell −→ polarization of final-state hadrons [Becattini

et al. (2013)]
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[Becattini et al. (2021)]

The sign puzzle seems to have been solved
but . . .

▶ It is not clear how and when the
spin degrees of freedom are
equilibrated
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Thermal vorticity and thermal shear are small and of the same order on the FO surface
(surface analysis with VHLLE output [Karpenko et al. (2014)])
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What is semi-classical spin hydrodynamics?



Standard dissipative hydro
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▶ Conservation of energy-momentum and angular momemtun

∂µT
µν = 0 ∂λJ

λµν = 0

▶ Perfect fluid (Jλµν is automatically conserved)

Tµν
(0) = εuµuν − P∆µν Jλµν = Lλµν ≡ 2T λ[νxµ]

▶ Dissipative hydrodynamics (Schematically ϵ∂ is the expansion parameter → David
Wagner’s talk)

Tµν = Tµν
(0) + ϵ∂T

µν
(1) + ϵ2∂T

µν
(2) + · · ·

Notations and conventions:

ηµν = diag(1,−1,−1,−1) A[µν] ≡ 1
2
(Aµν −Aνµ)
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This dog wants to perform a coordinate transformation

. . . and the definition of Lλµν annoys it!
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Standard dissipative hydro
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▶ Question of covariance (→ A. Chiarini’s poster)

Lλµν → Lλh = Kh
ν T

λν h = 1, 2, 3

Kh are generators of rotations DµK
h
ν +DνK

h
µ = 0

▶ Then DµT
µν = 0 =⇒ DµLµ = 0 → Qh =

∫
Σ dΣµK

µh being conserved

▶ Quantum nature of the fluid encoded in transport coefficients

* D is the covariant derivative

* In Minkowski coordinates h is related to µν e.g., Kλ(yx) = (0,−y, x, 0)

* Σ is a Cauchy hypersurface
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Happy now? Remember this is only in flat spacetime!
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Three assumptions of semiclassical spin hydro
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▶ Macroscopic quantum corrections → semi-classical expansion in ℏ (for more details
→ David Wagner’s talk)

▶ We truncate all the equations up to first order in ℏ [Weickgenannt et al. (2022)]

▶ Assumption I: decomposition of angular momentum

Jλµν = Lλµν + ℏSλµν

or the covariant form: J λh = T λνKh
ν + 1

2ℏS
λµνD[µK

h
ν]

▶ DλJ λh = 0 if the spacetime is flat ( =⇒ DλDµKν = 0) and

ℏDλS
λµν = 2T [νµ]
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Three assumptions of semiclassical spin hydro
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▶ Assumption II: In global equilibrium

T [νµ]
geq︷︸︸︷
= 0 DλS

λµν
geq︷︸︸︷
= 0 T (µν)

geq︷︸︸︷
= Tµν

(0)

▶ Assumption III:

T (µν) =

O(ℏ0)︷ ︸︸ ︷
T (µν)

standard
+O

(
ℏ2
)

T [µν] = O
(
ℏ2
)

▶ No back-reaction from spin to fluid DµT
(µν) = O

(
ℏ2
)

* In global equilibrium βµ = uµ/T is a Killing vector
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The symmetric part of the energy-momentum tensor
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T (µν) = Euµuν − P∆µν +Qµuν +Qνuµ + T µν

Semiclassical Landau frame

E = uµuνT
(µν) = ε+O

(
ℏ2
)

P = −1

3
∆αβT

αβ = p+Π+O
(
ℏ2
)

Qµ = ∆µαuβTαβ = O
(
ℏ2
)

T µν = ∆µν
αβT

(αβ) = πµν +O
(
ℏ2
)

MIS-type EOM for dissipative fluxes

τΠΠ̇ + Π = −ζθ + · · · τππ̇
⟨µν⟩ + πµν = 2ησµν + · · ·

Notations:
Ẋ ≡ uµDµX ∆µν

αβ := ∆(µ
α ∆

ν)
β −∆µν∆αβ/3
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Spin-

Polarization

Pre-Hydro

hydro

▶ Nf fluid fields {φA} = {ε, uµ,Π, πµν , · · · }
▶ By solving standard dissipative hydro (DNMR in

our case) we find {φA}
▶ Also Ns spin degrees {ψA} of freedom (spin

potential . . . )

▶ Knowing {φA} we can solve ℏDλS
λµν = 2T [νµ]

and other required equations to find {ψA}
▶ Inserting the results into the formula for Sµ on the

FO surface we find the polarization
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Ideal-spin hydrodynamics
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▶ 24 components of Sλµν and 6 equations → further equations are needed (e.g.,
from the method of moments)

▶ In ideal-spin approximation d.o.f in Sλµν are only the 6 ones in Ωµν

Sλµν = AuλΩµν+BuλuαΩ
α[µuν]+CuλΩα[µ∆ν]

α+DuαΩ
α[µ∆ν]λ+E∆λ

αΩ
α[µuν]

▶ Constraint from Assumption III: B − C −D + T ∂E
∂T = 0

* {A,B,C,D,E} are functions of ε or, equivalently, T

* In quantum kinetic theory

A =
ℏT 2

4m2

∂

∂T
(ε− 3P ) B =

ℏT 2

4m2

∂ε

∂T
C = D = E = − ℏT 2

4m2

∂P

∂T
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Ideal-spin hydrodynamics
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▶ The antisymmetric part of energy-momentum tensor

T [µν] = −ℏ2Γ(κ)u[µ
(
κν] +ϖν]αuα

)
+

1

2
ℏ2Γ(ω)ϵµνρσuρ (ωσ + βΩσ)

+ ℏ2Γ(a)u[µ
(
βaν] +∇ν]β

)
▶ Why“ideal”: spin contributions to entropy production is of higher order in ℏ

* {Γ(κ),Γ(ω),Γ(a)} are functions of ε or, equivalently, T

* Notations

ϖµν = −D[µβν] β = 1/T Ωµ = − 1
2
ϵµναβuνDαuβ ∇µ = ∆µνDν

κµ = −Ωµνuν ωµ = 1
2
ϵµναβuνΩαβ aµ = uαDαuµ
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Please stay with me, I will entertain you in a moment.
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The poor man’s toolbox
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We need a solution of hydrodynamics to feed into the spin equations
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The poor man’s toolbox
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We need a solution of hydrodynamics to feed into the spin equations

In a poor man’s toolbox:
▶ Damping of spin waves in a hydrostatics background [D. Wagner, M.S, and D. H.

Rischke arXiv:2405.00533] (Similar works: [Ambrus et al. (2022)] and [Singh et al. (2023)])

▶ Linear spin hydro [J. Sammet, M.S., D. Wagner, and D. H. Rischke, in preparation] (Similar
works: [Ren et al. (2024)] and [Daher et al. (2024)])

▶ Bjorken spin hydro [A. Chiarini, M.S., D. Wagner, and D. H. Rischke work in progress] [(Kind
of) similar work: [Singh et al. (2021)]]

▶ Rigidly rotating fluid [A. Chiarini, M.S., D. Wagner, A. Dash, and D. H. Rischke work in
progress] → A. Chiarini’s poster
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What can we possibly learn from each one?
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Different contributions can be investigated in these three simple setups

τκκ̇
⟨µ⟩ =

Bjorken︷ ︸︸ ︷
F (θ, β̇)κµ + (· · · )

Rigid rot.︷︸︸︷
ωµν +

Bjorken︷︸︸︷
σµν

κν

+

Linear and Rigid rot.︷ ︸︸ ︷
ϵµαβσωσGαβ +(· · · )

Linear and Rigid rot.︷ ︸︸ ︷
uµT

[µν]

Equations for both κ and ω are relaxation-type equations

τκ = −A−B − C

ℏΓ(κ)
τω = − E

ℏΓ(κ)

In quantum kinetic theory

τκ =
T

2m2Γ(κ)
(ε+ P ) τω =

T

4m2Γ(ω)
(ε+ P )

(
1− 1

v2s

)
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Linear regime



Linearized ideal-spin hydrodynamics
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Main idea: linearized equations of hydrodynamics in a homogeneous equilibrium configuration
have linear wave solutions

▶ Independent degrees of freedom in T (µν) are φ ∈ {β = 1/T, uµ, · · · } and in Sλµν are
ψ ∈ {κµ, ωµ, · · · }

▶ For each X ∈ {ϕ, ψ}: X0 → X0 + δX (X0 is constant in a homogeneous equilibrium
configuration)

▶ Fourier transform

δX(x) =

∫
d4k

(2π)4
eik·x/ℏδX(k)
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Linearized ideal-spin hydrodynamics
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▶ Insert δX into the EOM (in Fourier space)

ikµδT
(µν) = 0 ikλδS

λµν = δT [νµ] and EOM for dissipative fluxes

▶ EOM to the matrix form M δX⃗ = 0

▶ This equation has solutions iif det(M) = 0

▶ =⇒ dispersion relations for eigenfrequencies ω = ω(k) (if kµ = (ω,k))

▶ Performing this procedure for the example of ideal-spin hydrodynamics and DNMR (or
MIS) theory with shear viscosity alone → spin and fluid waves are decoupled!

ω2 − iℏaω − v2sk
2 − ℏ2b = 0 a =

τκ + τω
τκτω

b =
1

τκτω
v2s =

Γ(κ)τκ

4Γ(ω)τω
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Where did all fluid’s contributions go?
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▶ Let’s assume a fluid with Nf degrees of freedom: φA where A = 1 · · ·Nf (all possible
dissipative contributions, multiple charges etc)

▶ Such that all these equations in the linear order are written as

MAB
f δφB = O

(
ℏ2
)

▶ And Sλµν with Ns degrees of freedom: ψA where A = 1 · · ·Ns (ideal and dissipative)

▶ The Ns equations in linear order take the form

MAB
s δψB +MAB

fs δφB︸ ︷︷ ︸
source terms

= 0
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Where did all fluid’s contributions go?
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▶ All equations can be collectively written as(
Mf O

(
ℏ2
)

Mfs Ms

)(
δφ
δψ

)
= 0 .

▶ But ∣∣∣∣∣ Mf 0
Mfs Ms

∣∣∣∣∣ =
∣∣∣∣∣ Mf 0

0 Ms

∣∣∣∣∣ = det(Mf) det(Ms)

In the absence of back-reaction from the spin to the fluid, the linear characteristic equation
that determines the spin modes is decoupled from the fluid modes.
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Timescales in spin hydrodynamics
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Relaxation times simiar/larger than typical dissipative timescale τπ for small/large m/T [Wagner et al. (2024)]
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Timescales in spin hydrodynamics
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▶ At late times and small k the timescale td in damping factor exp
(
−t/td

)
is determined by

τω

▶ Spin degrees of freedom relax quite fast in high-energy collisions

▶ . . . while these timescales for low-energy collisions might be even larger than the lifetime
of the fireball

▶ A possible explanation of why the results of [Becattini et al. (2021)] are consistent with data
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Bjorken flow



Conformal Bjorken flow
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A theorist’s favorite solution which unfortunatley does not have thermal vorticity.
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Conformal Bjorken flow
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▶ Let’s assume conformal symmetry: ε = 3P ∼ T 4 τπ = Cτπ/T η = Cη
ε+P
T

▶ Reasons to love Bjorken flow (as a theorist):
1. A coordinate system (Milne) in which uµ = (1,0):

ds2 = dτ2 − dx2 − dy2 − τ2 dηs
2 τ2 = t2 − z2 tanh ηs =

z

t

2. All quantities are functions of τ only =⇒ EOM become ODEs
3. Energy-momentum tensor is diagonal Tµ

ν = diag(ε, P⊥, P⊥, P∥)

▶ The pressure anisotropy is due to the shear-stress tensor (which has one degree of
freedom)

A ≡
P∥ − P⊥

PEQ

▶ There is a clever parameterization found by Heller and Spalinski (2015):

w = Tτ f(w) = 1 +
τ

T

dT

dτ
A = 18

(
f(w)− 2

3

)
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Conformal Bjorken flow
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▶ There is a clever parameterization found by Heller and Spalinski (2015):

w = Tτ f(w) = 1 +
τ

T

dT

dτ
A = 18

(
f(w)− 2

3

)
▶ Slow-roll approximation captures the MIS attractor at early and late times

f(w) =
2

3
− w

8Cτπ
+

√
64CηCτπ + 9w2

24Cτπ
Cτπ = Tτπ Cη =

η

s
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Bjorken ideal-spin conformal hydrodynamics
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▶ The coefficients from conformal symmetry

{A,B,C,D,E} → {A,B,C,D,E}T 3 {Γ(κ),Γ(ω)} → {Γ(κ),Γ(ω)}T 4

▶ Constraint becomes algebraic

3E +B − C −D = 0

▶ Using rotational symmetry

κµ =

(
0, κ⊥(τ), 0,

κ∥(τ)

τ

)
ωµ =

(
0, ω⊥(τ), 0,

ω∥(τ)

τ

)
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Spin equations of motion
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▶ The same equations are found for x ∈ {ω, κ}:

Cτx

(
w

d

dw
+

A
6

)
x⊥ + (w − ρx)x⊥ = 0

Cτx

(
w

d

dw
+

A
6

)
x∥ + wx∥ = 0

▶ The timescales are redefined as Cτx = Tτx

▶ Couplings to the shear tensor: Tρκ = D/(ℏΓκ) and Tρω = E/(ℏΓω)
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A quick solution
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▶ Using the slow-roll approximation we find at late times

x⊥ ∝ exp

(
−Cτx

C2
τπ

w

)
wCτx/ρx x∥ ∝ exp

(
−Cτx

C2
τπ

w

)
▶ Numerical inspection with the assumption of a very small initial value of x shows that:

τπ has a much more important effect than τω and τκ
A large value of ρκ (ρω) can amplify a very small initial spin potential to a very large one
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Final words



▶ Numerically solving spin EOM on top of an uncharged fluid in global equilibrium with a
non-vanishing thermal vorticity

▶ . . . to understand better the equilibration timescale of spin degrees of freedom [A.
Chiarini, M.S., D. Wagner, A. Dash, and D. H. Rischke, work in progress]

▶ Multi-formalism polarization calculator code [N. Saß, M.S, A. Palermo, David Wagner, H.
Elfner, and Dirk H. Rischke, work in progress]
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Backup



Local Λ polarization
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Solving standard dissipative hydrodynamics and feeding the results into polarization for-
mula of [Weickgenannt et al. (2022)] on the freezeout surface: preliminary results signal that the
standard shear tensor contributes in the right direction [N. Saß, M.S, A. Palermo, David
Wagner, H. Elfner, and Dirk H. Rischke, work in progress]

S
µ
(p)NS =

∫
dΣ · p

f0p

2N

{
−

ℏ
2m

Ω̃
µν

pν +

(
g
µ
ν −

uµp⟨ν⟩

Ep

)

×
[
eχp

(
Ω̃

νρ − ϖ̃
νρ
)
uρ − χqdβ0σ

⟨α
ρ ϵ

β⟩νσρ
uσp⟨αpβ⟩

]}
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