Chiral kinetic theory in curved space reinterpreted and radiative corrections

Shu Lin Sun Yat-Sen University

The 8th International Conference on chirality, Vorticity and Magnetic Field in Quantum Matter, Timisoara, July 22-26, 2024

Outline

- Spin polarization in heavy ion collisions
- Lessons from quantum(chiral) kinetic theory and limitations
- Radiative corrections to spin coupling to EM fields
- Subtlety in mimicking off-equilbrium state by metric perturbion on equilibrium state
- Radiative corrections to spin coupling to hydro-gradients.
- Conclusion and outlook

global spin polarization in heavy ion collisions

$$L_{ini} \sim 10^5 \hbar \to S_{final}$$

Liang, Wang, PRL 2005, PLB 2005

Talks by Voloshin&Palermo, Mon

STAR collaboration, Nature $e^{-\beta(H_0-\mathbf{S}\cdot\boldsymbol{\omega})}$ 2017

local spin polarization in heavy ion collisions

STAR collaboration, PRL 2019

Fu, Liu, Pang, Song, Yin, PRL 2021 Becattini, et al, PRL 2021 Yi, Pu, Yang, PRC 2021

$$\mathcal{P}^i \sim \omega^i$$
 $\mathcal{P}^i \sim \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl}$ vorticity + shear

Spin polarization in heavy ion collisions

for
$$S = \frac{1}{2}$$
 particle

$$S_i \sim B_i$$

$$S_i \sim \epsilon^{ijk} \hat{p}_j E_k$$

external EM fields

$$S_i \sim \omega_i$$

$$S_i \sim \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl}$$

 $S_i \sim \omega_i$ off-equilibrium state: hydro gradient (mimicked by metric)

Spin polarization from correlation functions

Wigner function

$$S_{\alpha\beta}^{<}(X = \frac{x+y}{2}, P) = \int d^4(x-y)e^{iP\cdot(x-y)/\hbar} \left(-\langle \bar{\psi}_{\beta}(y)\psi_{\alpha}(x)\rangle\right)$$

➤ Spin polarization in EM fields

$$\langle S^{<}(X,P)\rangle_{\mathrm{eq},A_{\mu}}$$

Spin polarization in off-equilbrium state: hydro gradient

$$\langle S^{<}(X,P)\rangle_{\text{off-eq}} = \langle S^{<}(X,P)\rangle_{\text{eq},h_{\mu\nu}}$$

 $A_{\mu}, h_{\mu\nu}$ slow-varying $\partial_X \ll P$

Quantum (chiral) kinetic theory

$$\frac{i}{2} \partial S^{<} + PS^{<} = \frac{i}{2} (\Sigma^{>} S^{<} - \Sigma^{<} S^{>})$$

diag part spin-averaged **Boltzmann** equation

Hidaka, Pu, Wang, Yang, **PPNP 2022**

off-diag part spin evolution equation

Wagner's talk, Fri

$$S^{<} = \frac{1}{4} \left(\gamma^{\mu} V_{\mu} + \gamma^{5} \gamma^{\mu} A_{\mu} \right) \propto \delta(P^{2})$$
 up to $O(\partial)$

spin polarization

$$S^{<} = \frac{1}{4} \left[(1 + \gamma^{5}) \gamma^{\mu} R_{\mu} + (1 - \gamma^{5}) \gamma^{\mu} L_{\mu} \right]$$

Limitation of CKT

Phenomenology implementation based on free theory, but correction in coupling can be significant and crucial

kinetic theory

Arnold, Moore, Yaffe 2003 Ghiglieri, Moore, Teaney 2018

How to include coupling corrections?

correction to spectral density, usually ignored

this talk, beyond free particle spectral density

collision term in steady state

$$\delta f \sim O\left(\frac{\partial}{g^4}\right)$$

$$g^4 \times \delta f \sim O(\partial)$$

diagramatic resummation Gagnon, Jeon, 2006

collisional contribution to spin-shear coupling: SL, Wang, 2022, 2024

Equivalence of CKT to tree diagrams: EM fields

for right-handed particle

$$\delta S^{<0} = 2\pi \mathbf{p} \cdot \mathbf{B} \, \delta'(P^2) f(p_0)$$
$$\delta S^{$$

equilibrium distribution unchanged

gauge link motion modification by EM fields

Structure of radiative correction in medium

$$\Gamma^{\mu} = F_0 u^{\mu} + F_1 \hat{p}^{\mu} + F_2 \frac{i \epsilon^{\mu\nu\rho\sigma} u_{\nu} P_{\rho} Q_{\sigma}}{2(P \cdot u)^2}$$

 u^{μ} medium frame vector

$$S^{<0} = 2\pi F_2 p B_{\parallel} \delta'(P^2) f(p_0)$$

$$S^{< i} = 2\pi \left[F_0 \epsilon^{ijk} E_j p_k + F_1 p_0 B_\perp^i + F_2 B_\parallel p^i \right] \delta'(P^2) f(p_0)$$

spin Hall spin-perpendicular spin-parallel effect magnetic coupling magnetic coupling

In vacuum
$$F_0 = F_1 = F_2 = 1$$

In medium: lift of degeneracy possible

One-loop correction to electromagnetic FF

Types of corrections: vertex correction + self-energy correction

$$\delta F_0 = \frac{2m_f^2}{p^2} X + \frac{m_f^2}{p^2} \left(1 - \ln \frac{2p^2}{m_f^2} \right),$$

$$\delta F_1 = \frac{2m_f^2}{p^2}(X - 1) + \frac{m_f^2}{p^2} \left(1 - \ln \frac{2p^2}{m_f^2} \right),$$

$$\delta F_2 = \frac{2m_f^2}{p^2} X + \frac{m_f^2}{p^2} \left(1 - \ln \frac{2p^2}{m_f^2} \right),$$

X(p,T)

FF as renormalized couplings

SL, Tian, 2023

CKT solution for off-equilibrium state

$$S^{<} = \frac{1}{4} \left[(1 + \gamma^{5}) \gamma^{\mu} R_{\mu} + (1 - \gamma^{5}) \gamma^{\mu} L_{\mu} \right]$$

$$R^{\mu} = -2\pi\delta(P^2) \left(P^{\mu} f_n + \frac{\epsilon^{\mu\nu\rho\sigma} P_{\rho} n_{\sigma}}{2P \cdot n} \partial_{\nu} f_n \right)$$

 n^{μ} arbitrary frame vector

Hidaka, Pu, Yang 2016

$$n^{\mu} \to u^{\mu}$$

$$f\left(\frac{P \cdot u(X)}{T(X)}\right) \longrightarrow S^{i} \sim \left(\beta \omega^{i} + \epsilon^{ijk} \hat{p}_{l} \hat{p}_{k} \beta \sigma_{jl} + \partial_{i} \beta\right)$$
 Hidaka, Pu, Yang 2017 Yi, Pu, Yang 2019

degenerate couplings to vorticity, shear, T-grad

Equilibrium state perturbed by metric: vertex+gauge link

$$S^{<}(X,P) = \int d^4y \sqrt{-g(X)} e^{-iP \cdot y} \langle \bar{\psi}_{\beta}(X + \frac{y}{2}) \psi_{\alpha}(X - \frac{y}{2}) \rangle$$

Gao, Huang, Mameda, Liu 2018

$$\bar{\psi}(X+\frac{y}{2}) = \bar{\psi}(X)\exp(\frac{y}{2}\cdot \overleftarrow{D}) \quad \psi(X-\frac{y}{2}) = \exp(-\frac{y}{2}\cdot D)\psi(X) \quad \text{gravitational gauge link}$$

$$D_{\mu} = \partial_{\mu}^X + \frac{1}{4} \omega_{\mu,ab} \gamma^{ab} - \Gamma_{\mu\nu}^{\lambda} y^{\nu} \partial_{\lambda}^y \qquad \text{perturbation II:} \\ \text{rotation of spinor by}$$

spin connection

Perturbations can't change equilibrium distribution!

Equilibrium state perturbed by metric: CKT

$$\gamma^{\mu} = e^{\mu}_{a} \gamma^{a} \qquad \bar{\psi} = \psi^{\dagger} \gamma^{\hat{0}}$$

 μ curved index

a flat index

Gao, Huang, Mameda, Liu 2018

$$S^{<} = \frac{1}{4} \left[\left(1 + \gamma^5 \right) \gamma^a R_a + \left(1 - \gamma^5 \right) \gamma^a L_a \right]$$

$$R^{a} = -2\pi\delta(P^{2}) \left(P^{a} f_{n} + \frac{\epsilon^{abcd} n_{d}}{2P \cdot n} e_{b}^{\mu} D_{\mu} (P_{c} f_{n}) \right)$$

Clifford algebra in flat basis

 f_n : equilibrium distribution

$$D_{\mu} = \partial_{\mu}^{K} + \Gamma_{\mu\nu}^{\lambda} \frac{\partial}{\partial P_{\nu}} P_{\lambda}$$

$$\langle S^{<}(X,P)\rangle_{\text{off-eq}} \Rightarrow \langle S^{<}(X,P)\rangle_{\text{eq},h_{\mu\nu}}$$

Inequivalence?

What we have

$$R^a = -2\pi\delta(P^2)\left(P^af_n + \frac{\epsilon^{abcd}n_d}{2P\cdot n}e_b^\mu D_\mu(P_cf_n)\right) \qquad f_n : \text{equilibrium distribution}$$

$$D_\mu = \frac{\partial_\mu^X}{\partial \mu} + \frac{\Gamma^\lambda_{\mu\nu}}{\partial P_\nu}P_\lambda$$

Radiative correction expect to affect the Christoffel term only

What we want

$$R^a = -2\pi\delta(P^2)\left(P^af_n + \frac{\epsilon^{abcd}P_cn_d}{2P\cdot n}\partial_bf_n(X)\right) \qquad f_n : \text{off-equilibrium distribution}$$

A metric induced off-equilibrium state

$$R^{a} = -2\pi\delta(P^{2}) \left(P^{a} f_{n} + \frac{\epsilon^{abcd} n_{d}}{2P \cdot n} e_{b}^{\mu} D_{\mu} (P_{c} f_{n}) \right)$$

$$D_{\mu} = \frac{\partial_{\mu}^{X}}{\partial P_{\nu}} + \Gamma_{\mu\nu}^{\lambda} \frac{\partial}{\partial P_{\nu}} P_{\lambda}$$

$$f\left(\frac{p_a e^a_\mu u^\mu}{T}\right)$$

$$u^{\mu}=(g_{00}^{-1/2},0,0,0)$$
 equilibrium state in curved space

$$u^a=u^\mu e^a_\mu=-g^{-1/2}_{00}v^i$$
 off-equilibrium state in flat space

Proper choice of vielbein $e_0^{\hat{i}} = -v^i$

$$e_0^{\hat{i}} = -v^i$$

Equivalence from hydrodynamics

$$G_{\pi_i\pi_j}^R = \left(\delta_{ij} - \hat{k}_i\hat{k}_j\right) \frac{\eta^{k^2}}{i\omega - \gamma_{\eta}k^2} + \hat{k}_i\hat{k}_j \frac{(\epsilon + p)(k^2c_s^2 - i\omega\gamma_s k^2)}{\omega^2 - k^2c_s^2 + i\omega\gamma_s k^2}$$

$$G_{\epsilon\epsilon}^{R} = \frac{(\epsilon + p)k^{2}}{\omega^{2} - k^{2}c_{s}^{2} + i\omega\gamma_{s}k^{2}}$$

$$\omega \to 0$$

$$\omega \to 0$$
 $G_{\pi_i \pi_j}^R \to -\delta_{ij}(\epsilon + p)$ $G_{\epsilon \epsilon}^R \to -\frac{\epsilon + p}{c_s^2}$

$$\delta \pi_i = h_{0j} G_{\pi_i \pi_j}^R = -(\epsilon + p) \delta_{ij} h_{0j} \qquad \delta \epsilon = \frac{1}{2} h_{00} G_{\epsilon \epsilon}^R = -\frac{(\epsilon + p)}{2c^2} h_{00}$$

$$\delta \epsilon = \frac{1}{2} h_{00} G_{\epsilon \epsilon}^R = -\frac{(\epsilon + p)}{2c_s^2} h_{00}$$

$$h_{00} = -2\frac{\delta T}{T}$$

- Equivalence on time scale >> equilibration of hydro modes
- $\gt \langle S^{<}(X,P)\rangle_{\text{off-eq}} = \langle S^{<}(X,P)\rangle_{\text{eq},h_{\mu\nu}}$ holds in collisional theory in principle, may still work in collisionless theory in practice

Radiative corrections to spectral density

off-equilibrium propagators for quark/gluon from collisionless CKT

Hidaka, Pu, Yang 2017 Huang, Mitkin, Sadofyev,

Speranza 2020

Hattori, Hidaka, Yamamoto, Yang 2020

SL 2020

Equilbrium self-energy doesn't lead to polarization

➤Off-equilibrium correction to spectral density contributes to polarization in addition to CKT results

SL, Tian, to appear

Polarization & damping rates

$$i\frac{\Sigma_{ar}(P)}{g^2} = \frac{\gamma^5 \gamma_0 \omega \cdot \hat{p} A_0(p, T)}{\rho^2 A_0(p, T)} + \frac{\gamma^5 \gamma_k \omega_{\parallel}^k A_{\parallel}(p, T) + \gamma^5 \gamma_k \omega_{\perp}^k A_{\perp}(p, T)}{\rho^2 A_0(p, T)}$$

$$+ \epsilon^{ijk} \gamma^5 \gamma_k \hat{p}_i \hat{p}_l \sigma_{jl} B(p, T) + \epsilon^{ijk} \gamma^5 \gamma_k \hat{p}_i \partial_j \beta C(p, T)$$

A, B, C: complex functions

$$S_{ra}^{R} = \frac{i(P_{\mu} - iA_{\mu})\bar{\sigma}^{\mu}}{(P - iA)^{2}} \quad S_{ra}^{L} = \frac{i(P_{\mu} + iA_{\mu})\sigma^{\mu}}{(P + iA)^{2}}$$

- Flift of degeneracy in coupling to vorticity, shear, T-grad
- >splitting of damping rates for R&L-handed particles

magnetic analog:
Dong, SL, 2024
SL, Tian, to appear

Conclusion

- Equilibrium state perturbed by metric can't describe complete offequilbrium effect
- An equilbrium state in curved space describes off-equilbrium state in flat space
- Off-equilibrium correction to spectral density contributes to polarization
- Lift of degeneracy of spin coupling to vorticity, shear and T-grad
- Splitting of damping rate of R&L-handed particles

Outlook

- Quantum kinetic theory with spectral density correction
- Accleration? Off-equilibrium effect beyond static limit

Thank you!

$$\left(2k^{\mu} - \frac{\partial \text{Re}\Sigma}{\partial k_{\mu}}\right) \frac{\partial \rho}{\partial X^{\mu}} + \frac{\partial \text{Re}\Sigma}{\partial X_{\mu}} \frac{\partial \rho}{\partial k^{\mu}} = -\left\{\Gamma, \text{Re}\,G_R\right\}_{P.B.}$$

$$\rho(k,X) = \frac{\Gamma(k,X)}{\left(k^2 - m^2 - \Sigma^{\delta}(X) - \text{Re}\,\Sigma_R(k,X)\right)^2 + \left(\Gamma(k,X)/2\right)^2}$$