Chiral kinetic theory in curved space reinterpreted and radiative corrections

Shu Lin Sun Yat-Sen University

The 8th International Conference on chirality, Vorticity and Magnetic Field in Quantum Matter, Timisoara, July 22-26, 2024

Outline

- Spin polarization in heavy ion collisions
- Lessons from quantum(chiral) kinetic theory and limitations
- Radiative corrections to spin coupling to EM fields
- Subtlety in mimicking off-equilbrium state by metric perturbion on equilibrium state
- Radiative corrections to spin coupling to hydro-gradients.
- Conclusion and outlook

global spin polarization in heavy ion collisions

$$
L_{ini} \sim 10^5 \hbar \rightarrow S_{final}
$$

Liang, Wang, PRL 2005, PLB 2005

Talks by Voloshin&Palermo, Mon

STAR collaboration, Nature $e^{-\beta(H_0-S\cdot\boldsymbol{\omega})}$ 2017

local spin polarization in heavy ion collisions

STAR collaboration, PRL 2019

Fu, Liu, Pang, Song, Yin, PRL 2021 Becattini, et al, PRL 2021 Yi, Pu, Yang, PRC 2021

 $\mathcal{P}^i \sim \omega^i \quad \mathcal{P}^i \sim \epsilon^{ijk} \hat{p}_j \hat{p}_l \sigma_{kl}$ vorticity + shear

Spin polarization in heavy ion collisions

Spin polarization from correlation functions

Wigner function

$$
S_{\alpha\beta}^{<}(X=\frac{x+y}{2},P)=\int d^{4}(x-y)e^{iP\cdot(x-y)/\hbar}\left(-\langle\bar{\psi}_{\beta}(y)\psi_{\alpha}(x)\rangle\right)
$$

 \triangleright Spin polarization in EM fields

 $\langle S^<(X,P)\rangle_{\text{eq},A_u}$

Spin polarization in off-equilbrium state: hydro gradient

$$
\langle S^<(X,P)\rangle_{\text{off-eq}}=\langle S^<(X,P)\rangle_{\text{eq},h_{\mu\nu}}
$$

 A_{μ} , $h_{\mu\nu}$ slow-varying $\partial_{X}\ll P$

Quantum (chiral) kinetic theory

$$
\frac{i}{2}\phi S^{2} + \phi S^{2} = \frac{i}{2} (2^{3} S^{2} - 2^{3} S^{3})
$$
\ndiag part
\nSpin-averaged
\nBoltzmann equation
\noff-diag part
\n
$$
S^{2} = \frac{1}{4} (\gamma^{\mu} V_{\mu} + \gamma^{5} \gamma^{\mu} A_{\mu}) \propto \delta(P^{2})
$$
\nLipole equation
\n*Wagner's talk, Fri*
\n
$$
S^{2} = \frac{1}{4} [(1 + \gamma^{5}) \gamma^{\mu} A_{\mu} + (1 - \gamma^{5}) \gamma^{\mu} L_{\mu}]
$$
\nHilaka, Pu, Wang, Yang, P
\n*Wagner's talk, Fri*
\n*Wagner's talk, Fri*
\n*Wagner's talk, Fri*
\n*Wagner's talk, Fri*
\n*Wagner's Tk.*

Fri

Limitation of CKT

Phenomenology implementation based on free theory, but correction in coupling can be significant and crucial

How to include coupling corrections?

correction to spectral density, usually ignored

this talk, beyond free particle spectral density collision term in steady state

 $\delta f \sim O\left(\frac{\partial}{g^4}\right)$
 $g^4 \times \delta f \sim O(\partial)$

diagramatic resummation Gagnon, Jeon, 2006

collisional contribution to spin-shear coupling: SL, Wang, 2022, 2024

Equivalence of CKT to tree diagrams: EM fields

equilibrium distribution unchanged

SL, Tian, 2023

Structure of radiative correction in medium

$$
\Gamma^{\mu} = F_0 u^{\mu} + F_1 \hat{p}^{\mu} + F_2 \frac{i \epsilon^{\mu \nu \rho \sigma} u_{\nu} P_{\rho} Q_{\sigma}}{2(P \cdot u)^2} \qquad \frac{P_1}{r} \longrightarrow \frac{P_2}{a}
$$
\n
$$
u^{\mu} \text{ medium frame vector}
$$
\n
$$
S^{<0} = 2\pi F_2 p B_{\parallel} \delta'(P^2) f(p_0)
$$
\n
$$
S^{\n
$$
\text{spin Hall spin-perpendicular spin-parallel}
$$
\n
$$
\text{effect} \text{ magnetic coupling magnetic coupling}
$$
\n
$$
B_{\parallel}
$$
$$

In vacuum $F_0 = F_1 = F_2 = 1$

In medium: lift of degeneracy possible

SL, Tian, 2023

One-loop correction to electromagnetic FF

 $X(p,T)$

Types of corrections: vertex correction + self-energy correction

spin Hall effect

spin-perpendicular magnetic coupling

spin-parallel magnetic coupling

FF as renormalized couplings

SL, Tian, 2023

CKT solution for off-equilibrium state

$$
S^{<} = \frac{1}{4} \left[(1 + \gamma^{5}) \gamma^{\mu} R_{\mu} + (1 - \gamma^{5}) \gamma^{\mu} L_{\mu} \right]
$$

\n
$$
R^{\mu} = -2\pi \delta(P^{2}) \left(P^{\mu} f_{n} + \frac{\epsilon^{\mu\nu\rho\sigma} P_{\rho} n_{\sigma}}{2P \cdot n} \partial_{\nu} f_{n} \right)
$$
Hidaka, Pu, Yang 2016
\n
$$
n^{\mu} \rightarrow u^{\mu}
$$

\n
$$
n^{\mu} \rightarrow u^{\mu}
$$

\n
$$
f\left(\frac{P \cdot u(X)}{T(X)} \right)
$$

$$
S^{i} \sim \left(\beta \omega^{i} + \epsilon^{ijk} \hat{p}_{l} \hat{p}_{k} \beta \sigma_{jl} + \partial_{i} \beta \right)
$$
Hidaka, Pu, Yang 2017
\n
$$
f\left(\frac{P \cdot u(X)}{T(X)} \right)
$$

degenerate couplings to vorticity, shear, T-grad

Equilibrium state perturbed by metric: vertex+gauge link

perturbation I: motion
\nmodified by metric
\n
$$
S^{<}(X, P) = \int d^{4}y \sqrt{-g(X)} e^{-iP \cdot y} \langle \bar{\psi}_{\beta}(X + \frac{y}{2}) \psi_{\alpha}(X - \frac{y}{2}) \rangle
$$
\n
$$
\bar{\psi}(X + \frac{y}{2}) = \bar{\psi}(X) \exp(\frac{y}{2} \cdot \overleftarrow{D}) \quad \psi(X - \frac{y}{2}) = \exp(-\frac{y}{2} \cdot D) \psi(X)
$$
\n
$$
D_{\mu} = \partial_{\mu}^{X} + \frac{1}{4} \omega_{\mu, ab} \gamma^{ab} - \Gamma^{\lambda}_{\mu\nu} y^{\nu} \partial_{\lambda}^{y}
$$
\nperturbation II:
\nrotation of spin connection

Perturbations can't change equilibrium distribution!

SL, Tian, to appear

Equilibrium state perturbed by metric: CKT

$$
\gamma^\mu = e^\mu_a \gamma^a \qquad \bar{\psi} = \psi^\dagger \gamma^{\hat{0}}
$$

 μ curved index

flat index

Gao, Huang, Mameda, Liu 2018

Clifford algebra in flat basis

$$
R^a = -2\pi \delta(P^2) \left(P^a f_n + \frac{\epsilon^{abcd} n_d}{2P\cdot n} e_b^\mu D_\mu (P_c f_n) \right)
$$

 $S^{\leq} = \frac{1}{4} \left[\left(1 + \gamma^5 \right) \gamma^a R_a + \left(1 - \gamma^5 \right) \gamma^a L_a \right]$

 f_n : equilibrium distribution

 \blacktriangleright agree with vertex+gravitational gauge link Christoffel term can realize vorticity and Tgrad, but not shear!

$$
\langle S^<(X,P)\rangle_{\text{off-eq}} \triangleleft \langle S^<(X,P)\rangle_{\text{eq},h_{\mu\nu}}
$$

 $D_{\mu} = \partial_{\mu}^{K} + \Gamma^{\lambda}_{\mu\nu} \frac{\partial}{\partial P_{\nu}} P_{\lambda}$

 P' SL, Tian, to appear

Inequivalence?

What we have

$$
R^{a} = -2\pi\delta(P^{2})\left(P^{a}f_{n} + \frac{\epsilon^{abcd}n_{d}}{2P\cdot n}e_{b}^{\mu}D_{\mu}(P_{c}f_{n})\right) \qquad f_{n} \text{ : equilibrium distribution}
$$

$$
D_{\mu} = \partial_{\mu}^{X} + \Gamma^{\lambda}_{\mu\nu}\frac{\partial}{\partial P_{\nu}}P_{\lambda}
$$

Radiative correction expect to affect the Christoffel term only

What we want

$$
R^{a} = -2\pi\delta(P^{2})\left(P^{a}f_{n} + \frac{\epsilon^{abcd}P_{c}n_{d}}{2P\cdot n}\partial_{b}f_{n}(X)\right)
$$

 f_n : off-equilibrium distribution

SL, Tian, to appear

A metric induced off-equilibrium state

$$
R^{a} = -2\pi\delta(P^{2})\left(P^{a}f_{n} + \frac{\epsilon^{abcd}n_{d}}{2P\cdot n}e_{b}^{\mu}D_{\mu}(P_{c}f_{n})\right)
$$

$$
D_{\mu} = \frac{\partial_{\mu}^{X}}{\partial P_{\nu}} + \Gamma^{\lambda}_{\mu\nu}\frac{\partial}{\partial P_{\nu}}P_{\lambda}
$$

$$
f\left(\frac{p_{a}e_{\mu}^{a}u^{\mu}}{T}\right) \qquad u^{\mu} = (g_{00}^{-1/2}, 0, 0, 0) \qquad \text{equi}
$$

$$
u^{a} = u^{\mu}e^{a} = -e^{-1/2}u^{\mu} \qquad \text{or}
$$

ilibrium state in curved space

$$
u^a = u^\mu e^a_\mu = -g^{-1/2}_{00} v^i
$$

off-equilibrium state in flat space

Proper choice of vielbein $e_0^{\hat{i}} = -v^i$

SL, Tian, to appear

Equivalence from hydrodynamics

$$
G_{\pi_i \pi_j}^R = \left(\delta_{ij} - \hat{k}_i \hat{k}_j\right) \frac{\eta k^2}{i\omega - \gamma_\eta k^2} + \hat{k}_i \hat{k}_j \frac{(\epsilon + p)(k^2 c_s^2 - i\omega \gamma_s k^2)}{\omega^2 - k^2 c_s^2 + i\omega \gamma_s k^2}
$$

\n
$$
G_{\epsilon\epsilon}^R = \frac{(\epsilon + p)k^2}{\omega^2 - k^2 c_s^2 + i\omega \gamma_s k^2}
$$

\n
$$
\omega \to 0 \qquad G_{\pi_i \pi_j}^R \to -\delta_{ij}(\epsilon + p) \qquad G_{\epsilon\epsilon}^R \to -\frac{\epsilon + p}{c_s^2}
$$

\n
$$
\delta \pi_i = h_{0j} G_{\pi_i \pi_j}^R = -(\epsilon + p) \delta_{ij} h_{0j} \qquad \delta \epsilon = \frac{1}{2} h_{00} G_{\epsilon\epsilon}^R = -\frac{(\epsilon + p)}{2c_s^2} h_{00}
$$

\n
$$
h_{0i} = -v^i \qquad h_{00} = -2\frac{\delta T}{T}
$$

 \blacktriangleright Equivalence on time scale \blacktriangleright equilibration of hydro modes $\sum_{i} \langle S^<(X,P) \rangle_{\text{off-eq}} = \langle S^<(X,P) \rangle_{\text{eq},h_{\mu\nu}}$ holds in collisional theory in principle, may still work in collisionless theory in practice

Radiative corrections to spectral density

off-equilibrium propagators for quark/gluon from collisionless **CKT**

Hidaka, Pu, Yang 2017

Huang, Mitkin, Sadofyev, Speranza 2020

Hattori, Hidaka, Yamamoto, Yang 2020

SL 2020

Equilbrium self-energy doesn't lead to polarization \triangleright Off-equilibrium correction to spectral density contributes to polarization in addition to CKT results

Polarization & damping rates

$$
i\frac{\Sigma_{ar}(P)}{g^2} = \gamma^5 \gamma_0 \omega \cdot \hat{p} A_0(p,T) + \gamma^5 \gamma_k \omega_{\parallel}^k A_{\parallel}(p,T) + \gamma^5 \gamma_k \omega_{\perp}^k A_{\perp}(p,T)
$$

+ $\epsilon^{ijk} \gamma^5 \gamma_k \hat{p}_i \hat{p}_l \sigma_{jl} B(p,T) + \epsilon^{ijk} \gamma^5 \gamma_k \hat{p}_i \partial_j \beta C(p,T)$
A, B, C: complex functions

$$
S_{ra}^R = \frac{i(P_\mu - iA_\mu)\bar{\sigma}^\mu}{(P - iA)^2} \quad S_{ra}^L = \frac{i(P_\mu + iA_\mu)\sigma^\mu}{(P + iA)^2}
$$

 \triangleright lift of degeneracy in coupling to vorticity, shear, T-grad splitting of damping rates for R&L-handed particles magnetic analog:

SL, Tian, to appear Dong, SL, 2024

Conclusion

- Equilibrium state perturbed by metric can't describe complete offequilbrium effect
- An equilbrium state in curved space describes off-equilbrium state in flat space
- Off-equilibrium correction to spectral density contributes to polarization
- Lift of degeneracy of spin coupling to vorticity, shear and T-grad
- Splitting of damping rate of R&L-handed particles

Outlook

- Quantum kinetic theory with spectral density correction
- Accleration? Off-equilibrium effect beyond static limit

Thank you!

$$
\left(2k^{\mu} - \frac{\partial \text{Re}\Sigma}{\partial k_{\mu}}\right) \frac{\partial \rho}{\partial X^{\mu}} + \frac{\partial \text{Re}\Sigma}{\partial X_{\mu}} \frac{\partial \rho}{\partial k^{\mu}} = -\left\{\Gamma, \text{Re}\,G_{R}\right\}_{P.B.}
$$

$$
\rho(k, X) = \frac{\Gamma(k, X)}{\left(k^{2} - m^{2} - \Sigma^{\delta}(X) - \text{Re}\,\Sigma_{R}(k, X)\right)^{2} + \left(\Gamma(k, X)/2\right)^{2}}
$$