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Context. ..

Fermi liquid: long-lived quasiparticles
Tee 3> Timp, Tey = Wiedemann—Franz law

Features of transport:
e Gurzhi effect (minimum of resistivity),

e Breakdown of Wiedemann—Franz law,
. e Non-local transport.

Clean, strongly-coupled materials

= Tee K Timp, Tey (NO quasiparticles)
conserved momentum =- emergent
hydrodynamic transport

[review, Narozhny (2022)].

Graphene, ultra-pure 2D heterostructures,
Dirac/Weyl semimetals, cuprates.




...and motivation

0

Typical band structure of Weyl
semimetals [Armitage et al. (2018)].
Examples: NbP, TaAs, TaP
NbAs, WPs.

45

Figure: Negative
longitudinal (B || E)
magneto-resistance
[Nielsen, Ninomiya (1981)].
1 o oc B2 in NbP

| [Niemann et al. (2017)].

Figure: Breakdown of

the Wiedemann-Franz

law in WPy [Gooth et al.
(2018)].
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Setup

Conserved charges [Landsteiner et al., Lucas et al., Gorbar et al., Chernodub et al., ...]

DuTH = F" ]y A J" =0 duJ =cE-B

Constitutive relations:
® symmetries,
o derivative expansion,

e second law of thermodynamics 9,S* > 0.

Relativistic hydrodynamics with U(1)y x U(1)4 anomaly [Son, Suréwka (2009)] and
B~ 0O(1)

T = euu” + PAM +£° (u"'B” +u” B") + O(9)
JH = nut+£B" + O(0)
JE = nsut+&B" + O(09)

with € = cus, €5 = cu, and €% = cups. Dissipative and hydrostatic terms are O(9).

S
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Linear response and transport

Linear response theory [Martin, Kadanoff (1963)]%:

(5) = (2 =) (L%er)

Compute longitudinal DC transport E || B = conductivities diverge as w — 0.

Indeed, ndE adds momentum, J - 0E oc B - §E adds energy, 0E - B adds axial charge
= need energy, momentum and axial charge relaxations. J

1Heat current Q* = T — pJ* — ,u5Jg is not anomalous.

e ————————————————————————————
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Linear response and transport

Linear response theory [Martin, Kadanoff (1963)]%:

(sa) = () ) (o)

Compute longitudinal DC transport E || B = conductivities diverge as w — 0.

L

Indeed, ndE adds momentum, J - 0E oc B - §E adds energy, 0E - B adds axial charge
= need energy, momentum and axial charge relaxations. J

We look for relaxations such that:
e conductivities are finite in DC,
e transport coefficients are Onsager-reciprocal a = a,
o electric charge is conserved,

o (relaxations are independent).

1Heat current Q* = T — pJ* — ,u5Jg is not anomalous.

e ————————————————————————————



Diagonal relaxations

Natural choice [Landsteiner et al. (2014), Abbasi et al. (2016), ...]

00
D, 0TH0 = §(F°*Jy) — 53
X . 01
0u0T" = §(F™Jy) — 5TT
96" =0
0
0,0J = cdF - B — O
Tn5n5
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Diagonal relaxations

Natural choice [Landsteiner et al. (2014), Abbasi et al. (2016), ...]

00
0.5T" = 5(FOJy) — 5TT
i . 0%
0,07 = 5(F* 1) — 2L
Tm
5.J°
aﬂ(sju - Tnn
0
0,0Jt = cdF - B — O
Tnsns

Onsager relations require Thyng = Thn = Tm = Tee.

= Cannot have finite DC conductivities, Onsager reciprocal transport and
conservation of electric charge.

S



Generalized relaxation @
8t6€+...=—i65—ién— ons
Tee Ten Tens
1 1 )
oon+...=——de— —dn— ons =7 (dg,0n,dns)
Tne Tnn Tnng
1 1
odns + ... = — 0 — on — ons
Tnge Tngn Tngns
00P 4= 0
Tm

Onsager relations imply ¥ -7 = 77 - X7, explicitly

3 e € ee
0= Xnns  Xnn Xens | Xen  Xen  Xee + 2 more
Tens Ten Tnns Tee Tnn Tne

Finite DC conductivities, Onsager relations and electric charge conservation =
However:

e only opc is anomalous (NMR) opc = oprude + @B

e entropy production not positive definite.

S
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Kinetic theory

Boltzmann equation (BE) for fp = f(t,x,p)

atfp +p- pr = Ico”[fp]

If Icon = Ice, then Ic. = 0 gives Detailed Balance = Local Thermodynamic

Equilibrium
1

T 14 eCp—up-w)/T

fo

Integrate BE in momentum space against €p, p and 1 = hydrodynamics

d3p
/ (271_)314 Tee =0 for A={ep,p,1}

Charges are conserved in kinetic theory if I.on = Ice. )




0

Relaxation Time Approximation

Momentum relaxation: linearize [Gorbar et al. (2018)]

(0)
~ f© w i o__ 1
fom 7+ (P u) Do with [ = - g Comm v
Considering Ico = Iee + Iimp we have
_ r(0) ) pi
Iimpz_M = 8tPl+:—7
Tm Tm
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Relaxation Time Approximation

Momentum relaxation: linearize [Gorbar et al. (2018)]

8f(0)

1
for £+ (pw) =

1+ eCo—m/T

with O =
P

Considering Icon = Ice + Iimp We have

_ r(0) ) pi
Iimpz_M = 8tPl+:—7
Tm Tm
Energy and charge relaxations: I.oi = lce + fimp + ley
) et ... = _e=¢
Iev ~ _M = { 1€ + Tn .
Tn 3tn+...+...:_m

e
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Generalized relaxations from kinetic theory

Consider 7, = 7, (¢p) and expand

- £(0) _ F(0) 1 £00) _ f(0) 1 £00) _ 7(0) (0) _ £(0)
PR SURF s U Y LN W S O L

> Tj42 - 5% T0 Ep T1 T2
Integrate
M, — M —7 —&  Ms— M
Oe+...=——1 L_nzn_eme M Sy
70 T1 T2 T3
My— My M, —DM — —g
on+...=——2 —— L L S
70 T1 T2 T3
Linearize and identify
1 OMy 1 OM; 1 1 1
L - 4 =g =...
Tnn on 1o on T Tne

Mixed relaxations from kinetic theory identically satisfy Onsager § - 7 = 77 - x%. J

S ———————————————————————————————
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Summary and Outlook

e Hydrodynamic regime of Weyl semimetals = anomalous relativistic
two-components fluid.

o Longitudinal magneto-conductivities are divergent in DC = need energy,
momentum and axial charge relaxations.
o Generalized relaxations are necessary to satisfy fundamental considerations:

o finite DC conductivities
o Onsager relations
o conservation of electric charge

e They can be justified from kinetic theory using energy-dependent RTA.
o Entropy production not positive definite.
o Thermoelectric transport not anomalous.

o BKG-like model to preserve charge conservation.

For the future:
o Explicit examples from microscopic physics?

e Other relaxations mechanisms?

e e e ——————————————————————————————————
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Longitudinal magnetoresistance

Linear Response 6J = odE. If J* ~ O(9), numerator of o ~ O(9) must be
truncated at order one.

= If B~ O(d), o cannot depend on B* ~ O(8?). )

Standard order-one anomalous hydrodynamics fails to predict negative
magnetoresistance — cfr. [Landsteiner et al. (2014), Lucas et al. (2016)]

Consider B ~ O(1) = now B? ~ O(1) and appears in the conductivity.

Anomalous ideal fluid, £° = %c,u2 and & = ¢ [Ammon et al. (2021)].

Magneto-resistance is now well-defined and physical.

e e ——————————————————————————————————————————
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DC transport |

Longitudinal DC conductivities are infinite = add momentum, energy and charge
relaxations [Landsteiner et al. (2014), Abbasi et al. (2016)]

00
0,57 = §(F** Jy) — °L
Tee
. . 07
00T = §(F™Jy) — 5TT
5J°
8};6&]”’ = _a
0
9,002 = coE - B~ 25
Tnsns

Onsager relations Tee = Tan = Tnyng = Tm = unphysical solution.



DC transport Il @

First suggestion:
anomalous flow is superfluid-like [sadofyev, Yin (2016), Stephanov, Yee (2016)] = relax
normal component only, e.g. §J° = dn + cusB - dv — on

D, 0TH0 = §(F*Jy) — 3
Tee
00T = §(F™Jy) — or
on
auéJ” = —a
0,008 = 5B - B — 15
Tnsns

Onsager relations Tcc = Tpn = Tngns, While 7, > 0 is free = still bad.

o ———————



DC transport |ll: generalized relaxations

Second suggestion: generalized-mixed relaxations

. 1 1 1
energy: P de + o on + s ons
. 1 1 1 .
charge: P e + P on + . ons =79
H . 1 1 1
axial charge: . de + Foen on + o ons

Onsager relations imply ¥ -7 — 77 - X7 = 0, explicitly

0= Xems | Xom  Xew , Xen  Xew | Xee L5

Tens Ten Tnnsg Tee Tnn Tne

e Only o has NMR in DC, while o and  have standard Drude form.

e Entropy is not conserved

L K Hs #0 + 2 more

Tee Tne Tnse

e ——————————————————————————————————————



Collision integrals

We take Icoi = Iee + fimp + ey such that
g = [ @B Woos [fo = filSep —20) = Ty —T22T
and
oy = [ €Wyt (1= fia = ol = fir) (14 ne)] 8ep = ey = wa)
[ AW (L= o) (L4 10) = fol1 = for )] Bep + i — =)
if phonons in thermal equilibrium

o fo— 1Y - F0) _ 1
IE'Y ~ —T Wlth f = W
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Mapping relaxations

Consider 7,, = 7,(¢p) and expand

Cp0) _FO) 1 p0) _ F0) g p(0) _ FO)  £(0) _ 7(0)
Im”:ZE;f JO_ Ay A e

it Tjt2 - €2 To €p 1 To
Integrate
M, — M —-fn e—& My— M
et ... =8 TR e
T0 T1 T2 T3
Mo — My M, —M -7 e—¢&
dn+...=——o—2e MTHL N7 T,
To T1 T2 T3
Linearize and identify
1 OMy 1 OM; 1 1 1
L -+ — =y =...
Tan on 7o on 11 T2 Tne

o o ——————————————————————————
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BKG model: I,

Write
fo=FfO4+6fo = +hp)

And linearize collision integral I.. ~ Lc.hp + O(6%). It obeys
Leel =0 Leep=0 Lecep =0

which imply energy, momentum and charge conservation. Its RTA form
h
Lechy ~ —fO =2
.

does not conserve energy and charge = BKG model, i.e. RTA on the subspace
orthogonal to zero modes.
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BKG model: generalized relaxations

Write ~ ~
fO =50 w8 =100+ n)

I.., conserves charge, while its RTA form does not. Then, BKG model

f(O) 1,77
Le’y ~L.= —T Zai,jd) 1/}

2%

with ¥ ~ 1 9 ~ g, charge and energy eigenmodes of I...

Charge conservation implies a1,; =0
1 7 -z N~ #70) /= _
OO == 1O = 2FO 1 a0 fO (n - 1) + 6 O (en - e)]

= charge identically conserved, energy has generalized relaxations.

S o ———————————————————————————
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