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MOTIVATION

o Properties of Quark-Gluon-Plasma (QGP):

e Underlying symmetries.
e equation of state and medium thermodynamics.

o Phase structure.

In the presence of :

o finite temperature (7).
o finite chemical potential (1).

o finite rotation (2).
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MOTIVATION

e Angular momentum in noncentral collisions ~ 1000 = A
strong vortical structure of the resulting fluid.

i ] 75HE<PH'jSY5>

§ r Au+Au 20-50% °
‘_I_:’ 8| : %:::: ::33 7 o Jsys = Direction of the angular
ST 4 APRCT6024915 (2007) | momentum of the collision.
6 O A PRC76 024915 (2007) | . .
| eoon | e Py = Hyperon polarization
al i vector in the hyperon rest
L | frame.
2 a*s $ - o The Fluid vorticity can be
t dﬁ # L 1 estimated from the data —
0 “most vortical fluid produced in
”
T the laboratory” .
10 10°
SNN (Gev) STAR collaboration. Nature 548, 62-65 (2017)
) . i . X Becattini et al, Phys. Rev. C 95, 054902, (2017)
FIGURE 1: The hyperon average polarization in STAR collaboration. Phys.Rev.C76:024915 (2007)

Au-Au collision . STAR collaboration. Nature 548, 62-65 (2017)
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MOTIVATION

MOTIVATION
¢ Presence of vorticity in the system will affect the thermodynamic
properties and the phase structure of the QGP.

e Lattice result : Increasing angular velocity increases the transition

temperature. Braguta et al. Phys. Rev. D 103, 094515 (2021) , Ji-Chong Yang et al arXiv:2307.05755 [hep-lat]

o Effective model studies: without boundary condition:
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FIGURE 2: Temperature variation of effective quark mass and traced Polyakov loop.Mei Huang et al,

PhysRevD.108.096007, (2023)
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e Objective 1 :
The Deconfinement phase transtion in a rotating Bounded system.
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MOTIVATION

=0 Gev e Arotation induced split
between chiral and
deconfinement phase

s
B
o

f 2 transition was reported in
I Mei Huang et al,
| PhysRevD.108.096007,
o (2023)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 (GeV)

FI1GURE 3: Chiral and deconfinement phase digram in
T — € plane . Mei Huang et al, PhysRevD.108.096007, (2023)

e Objective 2 :

Is there a split between chiral and Deconfinement phase diagram for
a rotating bounded system?
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RESULTS FOR UNBOUNDED NONROTATING SYSTEM
FORMALISM N
ROTATING BOUNDED SYSTEM

POLYAKOV LINEAR SIGMA MODEL WITH QUARKS

¢ Model Lagrangian:

e Mesonic contribution:

£a(8) = 5 (Bu0%a + 8,70"T) — Vaalo,7),

A
V(o) = 1 (o* + 7 — v2)2 —ho.
e Quark contribution:

Lg=1v (iD—go) = [il)— glo+ iysT-7)] ¢
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ROTATING BOUNDED SYSTEM

POLYAKOV LINEAR SIGMA MODEL WITH QUARKS

e Mesonic contribution:

Lai(g) = % (8,00"0 + B,70"%) — Viau(o, 7).

V(o @) = 2 (o + 7 — 112)2 —ho.

e Quark contribution:
Lq= (i~ gp) ¢ = d(iD)p — g (o + insT - 7
e ho = explicit chiral symmetry breaking — m,. # 0.

e Model parameters: A, v, g, h, are fixed by m,, fr, m,, my.
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ROTATING BOUNDED SYSTEM

POLYAKOV LINEAR SIGMA MODEL WITH QUARKS

e Model Lagrangian:
e Polyakov contribution:

Ly a(T)L'L
T8~ 2

—b(T)In[1 —6L*L+4 (L* + L*) — 3(L*L)?]

7/24



RESULTS FOR UNBOUNDED NONROTATING SYSTEM
FORMALISM )
ROTATING BOUNDED SYSTEM

POLYAKOV LINEAR SIGMA MODEL WITH QUARKS

e Polyakov contribution:

£r  a(T)L'L

Ti=— 5 b [1-6L*L+4(L* + L% — 3(L*L)?

e Quark contribution:
Lg= (i) —g) v = [iD) — glo + irsT- 7)] ¢

D' = 0" —iA* AP = §,0A°

7/24



RESULTS FOR UNBOUNDED NONROTATING SYSTEM
FORMALISM N
ROTATING BOUNDED SYSTEM

POLYAKOV LINEAR SIGMA MODEL WITH QUARKS

e Polyakov contribution:

Ly a(T)L*L
T4 2

—b(T)In[1—-6L*L+4(L* + L%) — 3(L*L)?]
e Quark contribution:
Lg= (i) —g¢) v = [iD — glo + irsT- 7)] ¢

D' =M — At AF = §,,0A°

L= ;Tr(Texp[i/oﬂ dr As(X, T)])
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RESULTS FOR UNBOUNDED NONROTATING SYSTEM
FORMALISM N
ROTATING BOUNDED SYSTEM

POLYAKOV LINEAR SIGMA MODEL WITH QUARKS

¢ Polyakov contribution:

% = “(TT)LL —b(T)In[1 —6L*L+4 (L* + L*) — 3(L*L)?]

e [ and L* are the order parameter for the confinement deconfine-
ment phase transition as (L) = e=?f, m; — oo .

e a(T) and b(T) are fitted to reproduce Lattice SU(3) pure gauge re-
sults.
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RESULTS FOR UNBOUNDED NONROTATING SYSTEM

FORMALISM N
ROTATING BOUNDED SYSTEM

THERMODYNAMIC POTENTIAL

e Thermodynamic potential:

Z=Tr (e_ﬂ(H_“N)>

Thh 2
F(T) = — ‘1; — Vi + Vi+Fyyp

where,

d*p
Fyp=—2N;T > @l

s==+1

Fy =In[1+3Le P8 4 3L e %P8+ 4 o730+
F_=1In[1+3L*e#% +3Le7?P%- 4 ¢%5].
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RESULTS FOR UNBOUNDED NONROTATING SYSTEM
FORMALISM N
ROTATING BOUNDED SYSTE

THERMODYNAMIC POTENTIAL

e Thermodynamic potential:

Z=Tr (e_ﬁ(H_“N)>

TlnZ
F(T)=—- 3 =VM+VL—|—F¢J)

e Saddle point equations:

O(Fyg + Vam) 0. a(FWJFVL)_O, O(Fy5+ Vi)

0o ’ OL ’ OL*

e All thermodynamic observables are evaluated from the thermody-
namic potential F(om¢, L, L )

8/24



RESULTS FOR UNBOUNDED NONROTATING SYSTEM

S ROTATING BOUNDED SYSTEM
PHASE TRANSITION
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FIGURE 4: Phase transition at nonzero temperature and chemical potential (left) and corresponding
phase diagram (right)

e Increasing ; = crossover — first order phase transtion.
o (T, pic) = (0.2043,0.1123) in GeV.
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RESULTS FOR UNBOUNDED NONROTATING SYSTEM

FORMALISM
ROTATING BOUNDED SYSTEM

ROTATING CYLINDRICAL SYSTEM

e Cylinder of radius R rigidly A
rotating about the z axis in the
counterclockwise direction.

%

B
\

o We assume the effects of
rotation on to the quark sector.

e Conservation of angular
momentum J,.

o Causality criteria: QR < 1.

e Transverse direction is finite =—
transverse momentum is

discrete. FIGURE 5: Rigidly rotating cylinder M.
Chernodub et. al. 10.1007/JHEP01(2017)136.
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FORMALISM
ROTATING BOUNDED SYSTEM

ROTATING CYLINDRICAL SYSTEM

e The quark Lagrangian:
Le=1% [ (=0, + U +ids+p)+ iy -V —golv.

e Frequency: &% = w* — Qm
where w® is the Minkowski frequency, with contribution from the
energy, chemical potential and background gauge field.

o Energy: E = \/p? + g20%;; with p = \/¢? + p2

e Spectral boundary condition :

qR: €m_%7€7 m>0,
f_m_%,€7 m<0

Here &, is the [, nonzero root of the Bessel function.
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RESULTS FOR UNBOUNDED NONROTATING SYSTEM

FORMALISM
ROTATING BOUNDED SYSTEM

MODIFIED FREE ENERGY INCLUDING ROTATION

e Quark contribution to the free energy:

2NfT dpz
Rs=-20 5 3 [2F
=1 m=—o0
Fy =T [1 +3Le Pé+ 4 3L e+ 4 e—sgs@} :

F =1n |:1 + 3L*e—ﬁg_ + 3Le—2[3<§_ + e—3,{3§_:| )

e Non rotating system — rotating bounded system:

7 Tr (e—ﬁ(H—pN—SUZ)); / dP WRZZ Z /dpz

[=1 m=—o0
fnl

R2 +8%0%): —OmFpu

Ex=(PP+80") Fu—Er=(P2+
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RESULTS AND DISCUSSION

PHASE TRANSITION IN BOUNDED SYSTEM
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FIGURE 6: Temperature variation of sigma for different Radii at zero (left) and nonzero (right)
chemical potential

e Boundary favours the corossover transtion over the first order.
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RESULTS AND DISCUSSION

PHASE TRANSITION IN BOUNDED SYSTEM
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FIGURE T7: Temperature variation of traced Polyakov loop for different Radii at zero (left) and
nonzero (right) chemical potential

e First order signature is much suppressed in Polyakov loop behavior.
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RESULTS AND DISCUSSION

PHASE DIAGRAM IN BOUNDED SYSTEM

Chiral

QR=10.0 A

1t [GeV]

Deconfinement
QR =0.0

u [GeV]

0.4 0.5

FIGURE 8: The phase diagram of bounded system for chiral (a) and Deconfinement (b) transition
for different R .

e Boundary effects drags the critical point towards increasing u for
both chiral and deconfinement phase transition .
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RESULTS AND DISCUSSION

SPLITTING IN BOUNDED SYSTEM
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FIGURE 9: T; as a function of y for chiral and deconfinement transition (a) and the split in T, as a
function of the inverse radius.(b)

e Boundary effects introduces a splitting? between the chiral and

confinement-deconfinement crossover. AT, = TC(") - TC(L) .
e As R decreases splitting increases.

2Mei Huang et al. Phys.Rev.D 108 (2023) 9, 096007
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RESULTS AND DISCUSSION

PHASE TRANSITION AT FINITE ROTATION

0 e
0 0.05 01 015 02 025 03
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FIGURE 10: o/fr as a function of temperature for Radii 2 fm (a) and 5 fm (b) for u =0 .

o Critical temperature decreases as angular velocity increase.
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RESULTS AND DISCUSSION

PHASE TRANSITION AT FINITE ROTATION
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FIGURE 11: o/fr as a function of temperature for Radii 2 fm (a) and 5 fm (b) for © = 0.25 GeV .

e For finite temperature and chemical potential , angular velocity can
induce first order phase transition.
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PHASE DIAGRAM : R 2fm
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FIGURE 12: Phase diagram with different angular velocities for chiral (a) and Deconfinement (b)
phase transition.

e Finite rotation drags down the critical point towards lower chemi-

cal potential.
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PHASE DIAGRAM : R 5fm
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FIGURE 13: Phase diagram with different angular velocities for chiral (a) and Deconfinement (b)
phase transition.

e Finite rotation drags down the critical point towards lower chemi-
cal potential.
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RESULTS AND DISCUSSION

SPLITTING AT NONZERO ROTATION
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F1cURE 14: (a) Tc as a function of R for chiral and deconfinement transtion and (b) their difference
as a function of 1/R at different values of QR.

e At zero chemical potential as R decreases splitting increases.
e Non-triviality in the splitting of transition points as QR — 1.
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RESULTS AND DISCUSSION

SPLITTING AT NONZERO
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FI1GURE 15: AT, as a function of QR for different p and different radii.

e The split decreases as (2R increases .
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DisScuUsSION

0.9
0.8

0.6
0.5
0.4
0.3
0.2
0.1

Order parameter

RESULTS AND DISCUSSION

— 24| QR=10 QR =038 1
|
> 05)0T ===  05)OT === 1}
© 20t gL/oT OL/OT AN
@ A ] ';
£ h i 5
k16 Iy H 1
= Iy 1 !
< Iy 1° QR=100
2 12 h 1 i
ke h 15 96/0T ===
. 2 ! aL/oT
e s IN=S==o 8
005 01 015 02 025 03 01 012 0.4 016 018 02 022 0.24
T [GeV] T [GeV]

FIGURE 16: Order parameters and their slopes as a function of T at R=3 fm p = 0 and 3 values of

angular velocity.

e A discussion of a unique value for T, and hence the identification
of a split is not unambiguous in the case of rotating systems.

23 /24



RESULTS AND DISCUSSION

DisScuUsSION

e Polyakov enhanced Linear Sigma model coupled to the quark
degrees of freedom is employed to study QCD phase structure
and T # 0; u # 0 results are reproduced.

e Boundary effects favour the crossover scenario and drags the
critical endpoint towards higher chemical potential.

e Boundary effects mediates a splitting between chiral and
confinement deconfinement crossovers .

e splitting decreases as R increases.
e For a fixed R as QR increases splitting decreases.

e With Increasing rotation the phase transition temperature and
critical chemical potential decreases.
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SELF-ADJOINTNESS OF THE HAMILTONIAN

e On a general space-time, the Dirac inner product can be written

as:
P, X = /Vde\/—g 7'y,

where V is the volume enclosed inside the boundary and
{77} = —2g"".
e The Hamiltonian is self-adjoint if:

Y, Hx = Hy, x.
e Writing the Dirac equation as Hy) = i0,v gives:
vH = Hbx =i [ dsi/g e,
v

where 0V is the boundary of V.
e For a cylindrical boundary atp = R < Q1

0o 2m
R/ dz/ do+?x = 0.
—o0 0



SPECTRAL BOUNDARY CONDITIONS?

o Consider the Fourier transform of a solution v of the Dirac
equation:

(m+3 ) to.1 3 e~ 193 Lo 4 T

¢—m_§;me”" Plertey, el enieul ettt T

e
T2
o Its charge conjugate ¢, = i’yzw* is given by:

2 :el(m+ e 2¢¢4* L

T2

i 3 T
zsaflpi*ilv_ ) .

_%wa* l’e%gawl* 1
—m— —m—3

[\
[\

m=—oo
e The self-adjointness of the Hamiltonian is then ensured if:
o0
1% 4 2 % 3% 4 %
: =0
(4, x) Z(¢ 1+¢ 1X 1+¢ 1X 1+ v 1X+;> .

m
i +2 mt m+3 mts  mtg m

oo
. N B 4 4 _
(e x): D <m+;><_m_; P, 1, X 1) 0.
m=—oo
e Solution:
m+ % >0 :Ju(gmR) =0 suchthatz/) Jp R= z/;fMlJp:R:O;
2

m+ 1 <0 :Jnp1(gmR) = Osuchthat¢m+%Jp:R = ;+%Jp:1e =0.

3M. Hortacsu, K. D. Rothe, B. Schroer, Nucl. Phys. B 171, 530 (1980).
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