Relativistic stochastic advection-diffusion
equation using Metropolis

Ref: 2403.04185 (to be published in PRC)

Gokcge Basar, Jay Bhambure, Rajeev Singh, Derek Teaney

Stony Brook University
NISER



https://arxiv.org/abs/2403.04185







Outline

Why we need stochastic relativistic hydrodynamics?

Relativistic advection-diffusion equation from density
frame

Importance of Metropolis for stochastic dynamics



Standard hydro success

A = gt + ytu"

— “Standard” hydro model is amazingly 0 TH =0 with TH = eutu’ + P(e)A/“‘”+dissipation
successful in large collision systems K



Standard hydro success

A = gt + ytu"

—)- "Standard™ hydro model is amazingly 0T =0 with T = eutu”+ P(e)A*"+dissipation + noise
successful in large collision systems K

—) What about small collision systems:
d+ Au, He + Au
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T 25 It is difficult to define flow pattern
';'_2 hhhh with small no. of particles
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—— Collective behavior in small systems . | . .
In this case: fluctuations become important



ssues? Recap: Stochastic Viscous Hydro

A = gt + ytu"
Choice of hydrodynamic frame:

—- u'T" = —e(T)u” " = eu'u” + P(e) A" —no™ + &£

to all orders

2
(EPY(x) EP9(y)) = 2T7]5;Ly AHPAVO 4 AHOAVP _ EA'WAPG

® Different hydro frames (Landau/Eckart) will give different answers!

e But, will agree at first order after using ideal EoMs

—- Unstable ]ll) = — Dain

® Equations are second order in time with runaway solutions

_5” |Israel-Stewart formulation

——  BDNK

Alternative?



Alternative: Density frame hydro

J. Armas and A. Jain, SciPost Phys. 11 no. 3, (2021) 054

—— Hydro without boosts

—— Easy to implement Metropolis updates

No non-hydro modes and no additional
) parameters

Density frame EoMs can be derived from Landau ones if
) ideal EOMs are used to replace lab frame time derivatives

Equations are first order in time and stable.
: Numerically easy to implement

Results obtained in different Lorentz frames will vary,
—— but the variation is beyond the accuracy of the
diffusion equation



Density frame & relativistic diffusion

diffusing charge

Consider a charge in a moving fluid which is IN+V.T=0
; not Lorentz invariant N+ VS

diffusion Background fluid with velocity v

4

—~  Hydrodynamics will still be valid J'=Nv'+
e’

™~

Ideal advection

} The diffusive current is expanded in Ji = — D.(V) DN — D Sl — 5519,
gradients of the charge D | VYN =D, (v)( V)N

diffusion parallel to v diffusion perpendicular to v

See poster by R. Singh to obtain density frame equations
from Landau frame and kinetic theory

J. Armas and A. Jain, SciPost Phys. 11 no. 3, (2021) 054
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For Lorentz covariant fluid

—— Inthe Landau frame
JE = nut + 7 with Jjp, =— DA¥9, n

—— Define N = JY and use lowest order equation of motion on+von=0

; to rewrite time derivatives, leads to the density frame
form

| D . D . .
Ji=Nvi+ — 90N +—(5Y — 99/)o,N
Y y

where

D
vy =3

N —/

diffusion parallel to v

D
DL(V) = —
4

N

diffusion perpendicular to v



Form of the advection-diffusion equation in
_>_ g

the density frame is 0N + 0(Nv') = ai(leaj N) with DY = —(6Y — viy/)
Y

Equations are strictly first order in time and
—) g y

stable
; Each Lorentz observer has his own dsV = — 'gﬂdTO + ﬁd JY
hydrodynamics frame where T
; Chemical potential is defined to all orders by JO u, JF
0 H=—-: VS. U =
the charge J yu® ¥

N N

Density Frame Landau Frame
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N(t,x) /N,
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Approach to dissipative steady state

Start at = 0 with N(x) as a Gaussian and J;, = 0 in lab frame with

L/,

J:NV‘l‘JD

width in fluid frame in units of /¢, = 2 c7p

— — =0
——— =5 (TR/Y)
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¥ (X-V 1) / Lmtp

100 150 200

The dissipative steady state is approached on
a timescale 73/y



N(t,x) /N

Approach to Density frame

D
J = Nv + Jp = with prediction J, = —0d.N
Y

Start at = 0 with N(x) as a Gaussian and J;, = 0 in lab frame with

L/lg, = width in fluid frame in units of [ ¢, = 2 c7p
1 4 I 001 I | | |
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The dissipative steady state is approached on
a timescale 73/y
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Convergence of gradient expansion

T
y2Jp = —R@xN+ Cy
q

Start with narrow Gaussian N(x) with rest

frame width L/l ;) = 4

(
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The first term in the gradient expansion is always well behaved
In contrast to higher orders
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Enough! Let’s add some “noise”



) The stochastic equations

Brownian Motion

of motion: 09+ {x,Z} =0

oH

0tp+{p,?’/}=—n<—>+5

op

p
=—-n—+¢
m \ noise: (£(1)&E(t)) =2 Tny O,

AN

velocity

—)—  The probability P(, g, p) distribution

evolves to equilibrium: P,

17

q

e‘ﬁ%

0P + (P} =TV, (BV,7P+V,P)
!

N e

A unique mathematical structure which reaches
equilibrium

Motion

Free energy: # =

Browninan ’

2

P

2m

- V(g)
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Dissipative dynamics from Metropolis updates

oH .
op=-—n <E> + & with (E(DE()) =2Tn o, . | .

Motion

Make a proposal with the

. 2 _
right variance: p—=p+Ap with (Ap7) =2Tn At

P

Free energy: 7# = F V(g)

Find the change in free 2m

energy:

oA
AZ = Z(p+ Ap) — #Z (p) =~ <E) Ap

Proposal is accepted if AZ < O. If

AFZ > 0, accept with probability
Py, = e PA%

The accepted proposals reproduce the
dissipation and variance

(Ap) = — 7 (a@z) At and ((Ap)*) =2Tn At
p



Advantages of Metropolis approach

— Metropolis steps are guaranteed to converge
to the required equilibrium distribution

For At the Metropolis updates naturally
—- reproduce the Langevin dynamics of the
diffusion equation

Detailed balance and the Fluctuation
— Dissipation Theorem are automatically

preserved, independently of At

Simplifies the renormalization of
—) P

kinetic coefficients
P. B. Arnold, Phys. Rev. E 61 (2000) 6091-6098

Used for other problems:
—>—  Sphaleron rate, O(4) critical
point, Model B

G. D. Moore Nucl. Phys. B 568 (2000),
Florio, Grossi, Soloviev, Teaney, Phys. Rev. D 105 no. 5, (2022) 054512
Florio, Grossi, Teaney, Phys. Rev. D 109 no. 5, (2024) 054037

19 Chattopadhyay, Ott, Schaefer, Skokov, Phys. Rev. D 108 no. 7, (2023) 074004



Simple diffusion equation

randomly transfer charge
between cell A and B

—) The stochastic equation of motion (&(x)E(x")) =2 Tod(x — x')
with noise

A B
| S oH
on+V jp=0  with jh=-oV—1+¢
n
Ny — Ny — ¢ and Ng — Np + ¢
. . i 2
> Thefres eneray describing the gy _ (g3 with 697 = u(n()
uctuations is ] 2y

—— Make a proposal for a charge transfer (%) ~ 2 To At
between cells: 17

Florio, Grossi, Soloviev, Teaney, Phys. Rev. D 105 no. 5, (2022) 054512



Simple diffusion equation

randomly transfer charge
between cell A and B

—)— The proposals have the correct variance: (g?) ~ 2 T o At

A B
ny — Ny —q and ng — ng+ g
—— The change in entropy is:
oA|nl oA |n]
AT = q =~ (up— Ha)q = qO.p
5nB 5nA
\ The accepted proposals reproduce the
dissipation and Variance <q> e Gax//tAt h expected diffuse current

Florio, Grossi, Soloviev, Teaney, Phys. Rev. D 105 no. 5, (2022) 054512
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—

—

Stochastic diffusion equation

Form of the advectlon—dlﬁgsmn .eqL.Jatlon In the density frame o,N + dl-(Nvi) _ ai(Dijaj N + fi)
with noise is
with dissipative matrix DY = —(6Y — vH/) and variance (E' ()& X)) =2T DY,
Y
The framework of Metropolis applies

Propose a charge transfer with transverse and longitudinal

variances
o O
N, —> N |
A A 2 2

Then accept/reject according to AS yields the mean
diffusive current



Correlation functions

. Y _ O . 4! _ l:j 4/ .o D PR D .o FEINE
——  Expected form: Cy,(t — ', k) = Tyucos(v - k (t — t')) exp(=D kiki [t —1t]) DY = =9/ + — (511 _ VlVJ)
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We have generalized to full viscous hydrodynamics
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It’s boring, show some video!
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Density frame vs BDNK

ongoing work
stay tuned!

0.25
0.20 -
% 0.15
0.10
— Density Frame
------ BDNK 4rn/s=0,1,3,6 0.05 -
— ldeal Hydro
' ' ' ' 0.00
—-50 -25 0 25 50 75 —75

—30

—25 0 25 50 /5

A. Pandya and F. Pretorius, Phys. Rev. D 104, 023015 (2021)



Ttx

Density frame vs BDNK
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ongoing work
stay tuned!

47n/s =10 A
—— Density Frame

A. Pandya and F. Pretorius, Phys. Rev. D 104, 023015 (2021)



28

summary

The mathematical structure follows the particle in a potential example

Stable first order and has no non-hydrodynamic modes

Noise comes first and then dissipation

Procedure is to take an ideal step and make a random
momentum transfers with specific variances

We have generalized to full viscous hydrodynamics
in Bjorken and General coordinates

Have very good agreement with relativistic MIS and BDNK for small viscosity
and works better than BDNK (and similar to MIS) for larger viscosities

The momentum proposal is parallel transported from cell-face to cell-centers for
the accept/reject

The parallel transport reproduces the covariant derivatives in the dissipative strain

It is hoped that the Metropolis algorithm for stochastic hydrodynamics will be robust and effective,
yielding a significant advance in the modeling of the quark-gluon plasma created in heavy ion collisions






Metropolis-Hastings algorithm

Let f(x) be the (possibly unnormalized) target density, xU) be a current value,
and g(x|xY)) be a proposal distribution, then

@ Sample x* ~ g(x|xY)).
@ Calculate the acceptance probability

§ o f(x*) q(xV|x*)
p(x(J),x ) = min {1. FOx) g0x*Ix0)) } .

@ Set xUt1) = x* with probability p(xU), x*), otherwise set xU+1) = xU).

Notes:
o x) % X where X ~ f(x).
@ The sequence xY) is not independent.

R

|
p—

% h (xU)) — Ef[h(X)] = /X h(x)f(x)dx

J
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