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Motivation



• The quark-gluon plasma (QGP) is a state of deconfined quarks and gluons 
generated above a critical temperature .  Chiral symmetry is restored 
up to the small values of the quark masses. 
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• These studies on anomalous transport were focused on the vector (electric) and 
axial (chiral) degrees of freedom, related to the conserved charges of the 

 symmetry of the Lagrangian. 
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• These studies on anomalous transport were focused on the vector (electric) and 
axial (chiral) degrees of freedom, related to the conserved charges of the 

 symmetry of the Lagrangian. 
• There is another conserved charge: Helicity. 
• Analogous to the CME, CVE… Transport phenomena has been uncovered involving 

the helicity current, as the Helical Separation Effect (HSE)  
• The inclusion of the helical degree of freedom is necessary for the study of 

collective excitations. It modifies the previously discussed CMW and CVW. 

Disclaimer: Helicity is not conserved exactly. Its violation comes from pair creation-
annihilation processes e.g. . 

Axial charge is not conserved due to the axial anomaly.

U(1)V × U(1)A

JH ∼ TB

e+
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L e−
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Motivation: QGP, Anomalous Transport and Helicity

Goal  
• Study the collective excitations of a fluid 

consisting of massless (anti)fermions in the 
presence of rotation.



Setup



Hydrodynamic setup: 
 Conservation Equations and Longitudinal Perturbations

• The waves are characterised by the dynamics of the (approximately)-conserved 
quantities. 

• In the problem under consideration energy and momentum are conserved, as well 
as the vector, axial and helical charges. 

• Therefore, we impose the conservation equations: 

• These operators are found by means of the Noether’s theorem and for a free 
massless fermion they are  

∂μTμν = 0 ∂μJμ
V = 0 ∂μJμ

A = 0 ∂μJμ
H = 0



Hydrodynamic setup: 
 Conservation Equations and Longitudinal Perturbations

• We impose the conservation equations: 

• We evaluate their expectation values  in a thermal state of rotating 
massless fermions described by the density operator: 

where we have introduced a chemical potential for each of the conserved U(1) charges. 

• The above density operator induces a preferred hydrodynamic frame, the -frame, 
defined by the following 4-velocity: 

⟨ ⋅ ⟩ = Z−1 Tr{ρ⋅}
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• As is customary in relativistic hydro, we decompose the expectation values in a 
particular frame.  

• Conformal fluid ( ) with equation of state  . Then Tμ
μ = 0 Eβ = 3Pβ

Hydrodynamic setup: 
 Conservation Equations and Longitudinal Perturbations

Quantum corrections to the perfect fluid form.

Survives to linear order in Ω



• As is customary in relativistic hydro, we decompose the expectation values in a 
particular frame.  

• The scalar quantities (Energy, Pressure, Charges, Conductivities) can be computed 
as a classical term (plus quadratic corrections which we neglect). In particular

Hydrodynamic setup: 
 Conservation Equations and Longitudinal Perturbations



• Two ways to simplify the problem: 

I. Go to the Landau frame:  

II. Perform a Lorentz transformation to remove the  contribution (i.e. z-th 
component) from the Landau velocity

Tμ
νuν

L = ELuμ
L

ωΩ

Hydrodynamic setup: 
 Conservation Equations and Longitudinal Perturbations



• In summary:

Hydrodynamic setup: 
 Conservation Equations and Longitudinal Perturbations

Neglecting quantum corrections of order  Ω2

∂μTμν = 0 ∂μJμ
V = 0 ∂μJμ

A = 0 ∂μJμ
H = 0



• Upon substitution of the constitutive relations, the previous equations turn into

Hydrodynamic setup: 
 Conservation Equations and Longitudinal Perturbations

• We study perturbations around the rigidly rotating state along the rotation axis



• The energy momentum sector gives a closed system for  and  

• It also admits the trivial solution . The non-trivial excitations in the 
charge sector satisfy this condition. 

δP δu

δu = δP = 0

Hydrodynamic setup: 
Energy-Momentum sector

whose non trivial solutions are the sound modes = ± 1/ 3



• The equations for the perturbations in the charge sector read: 

• The thermodynamic quantities naturally depend on the chemical potentials, thus 
we rewrite the equations in terms of δμℓ
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• The equations for the perturbations in the charge sector read: 

• The thermodynamic quantities naturally depend on the chemical potentials, thus 
we rewrite the equations in terms of  

• The problem reduces to diagonalising .

δμℓ

𝕄

Hydrodynamic setup: 
Charge sector



Results I



• Large Temperature Limit  

A. Helical Vortical Mode  
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B. Axial Vortical Mode  

(Uni-directional!)
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CASE I:  
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Setup II



• Non-conservation can be implemented in the RTA approximation. Typically 

• If there are more than one charges in the system, both approaches are in general 
inequivalent due to non-vanishing crossed susceptibilities 

• We implement dissipation on the basis of the chemical potential: 

A. On the one hand, a chemical potential is not well defined, in a thermodynamic 
sense, for non-conserved charges. It is reasonable to demand that it is absent in 
the final equilibrium state. (Note: The equilibrium equations are solved only for 
the unpolarised plasma ) 

B. Secondly, it can be shown that the other prescription can give rise to unphysical 
instabilities.

μA = μH = 0

∂μJμ = −
δQ
τ

∂μJμ = −
χδμ

τ≡

Non-Conservation of Charges

∂μJμ = −
δQ
τ

∂μJμ = −
χδμ

τ≡



• Helicity is not conserved in the presence of interactions. For example, in processes   

 like                             chirality is conserved ( ) while helicity is violated ( ). 
• Such processes will take place both in QED and in QCD, leading to ‘relaxation of helicity’. 

QCD weak-coupling estimation given in [Ambrus, Chernodub (Mar 2023)]    

• The chiral symmetry is actually anomalous (i.e. broken by quantum effects) and the axial 
current is not truly conserved:

ΔQA = 0 ΔQH = 2e+
R e−

L → e+
L e−

R

1
2

τH

Non-Conservation of Charges

∂μJμ
5 = −

1
12π2

ϵμνρσTr{GμνGρσ}



Results II



• At small chemical potential we recover the Helical Vortical Wave [Ambrus, 
Chernodub (Mar 2023)]: 

• The wave propagates for wavenumbers above the threshold . Thus, the non-
conservation of the helical charge inhibits propagation of the IR modes. 

• This mode exists with vanishing chemical potentials! . Contrary 
to the traditional CVW which requires . 

kth

μV = μA = μH = 0
μV ≠ 0

CASE II: 
 Non-Conserved Helicity ( )0 ≤ τH < ∞
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• Dependence of chemical potential and 
temperature with collision energy:  

 [Cleymans, Oeschler, Redlich, Wheaton 
(2006)]

No Propagation!

CASE II: 
 Non-Conserved Helicity ( )0 ≤ τH < ∞



• In the limit when helical charge dissipates very quickly ( ) the helical degree 
of freedom is effectively frozen and we recover the traditional Chiral Vortical Wave 
[Jiang, Huang, Liao (2015)]

τH → 0
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• There are two remarkable novelties when axial charge is also dissipating: 

A. The  limit gives the generalisation of the CVW (Vector-Axial) when axial 
charge dissipates. The presence of  also eliminates the propagation of IR 
modes. 

B. The  limit, equivalent to neglecting/freezing the axial degree of 
freedom, gives a HVW (Vector-Helical). Note that 

τH → 0
τA

τA → 0
τA ∼ 0.25 fm/c ≪ τQGP ∼ 10 fm/c

CASE III:  
Non-Conserved Helicity and Chirality ( )0 ≤ τH, τA < ∞

 [Phys. Rev. D 102, 
054516 (2020)]
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CASE III:  
Non-Conserved Helicity and Chirality ( )0 ≤ τH, τA < ∞

 τH = 2.7 fm/c τA = 0.25 fm/c , τR = 0
μV = μA = μH = 0 T = 300 MeV



• Finally, the presence of interactions gives rise to kinetic dissipative effects. Again these 
are implemented in the RTA and parametrically controlled by . 

• The dissipative contributions appear as deviations from the perfect fluid form. 

These are unconstrained and must be specified by constitutive relations. In 1st order 
hydro:  

• The expectation values are now computed with the distribution function that solves the 
kinetic equation

τR

Dissipative Effects

! A causal and stable theory requires 
2nd order hydro. 



• After some manipulations one finds  

• The diffusion Matrix becomes                                           and the shear viscosity  

• Fluctuations around rotating state + Fourier transform give for  sector 

•  The modes from the charge sector get a constant imaginary shift.  

                                                                 

Tμν

Dissipative Effects

Kinetic dissipation 
damps UV modes.



Final Case: Dissipation and charge non-conservation

  τH = 2.7 fm/c τA = 0.25 fm/c
μV = μA = μH = 0 T = 300 MeV Ω = 100 MeV



Summary



• A fluid with vector axial and helical charges shows a rich variety of wave-like excitations. 
• In a neutral unpolarised plasma the V, H d.o.f.s propagate as the Helical Vortical Wave.  

• In a realistic plasma, axial and helical charges are not conserved           

IR (large wavelength) propagation cutoff.  
• Conversely, kinetic dissipation damps UV modes. 

•  The traditional Chiral Vortical Wave arises only in the particular limit . 
• Both non-reciprocity and uni-directionality appear in a chirally imbalanced medium. 
• The waves are unlikely to give a phenomenological imprint in the QGP at HIC. 
I. Employ the framework for polarisation measurements in HIC. 
II. Extension to more realistic EOS.  
III. Investigate kinetic theory framework for fluids with these three charges. 

0 < τA, τH < ∞

τH → 0

Summary & Outlook
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• Degenerate Limit: . 
• The system composed of only particles (or antiparticles) up to exponentially small 

corrections. Hence, the helical and axial degrees of freedom are not independent 
and the solutions depend only on  .  

• Neglecting exponentially suppressed corrections one finds two modes: 

|μV | ≫ T , |μV | ≫ |μA ± μH |

μχ = μA + μH

CASE I:  
 Conserved Charges

μV /T = 10 , μA = μH = 0
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The linear perturbation 

regime is unreliable in this 
limit. Including dissipation 

will fix this problem.

δμχ̃ ∼ (μV /T)4



• In the degenerate limit ( ), the finite lifetime  acts as a regulator and no 
perturbation grows to unreasonably large values. 

μV /T ≫ 1 τH

CASE II: 
 Non-Conserved Helicity ( )0 ≤ τH < ∞



τH

τA

CASE III:  
Non-Conserved Helicity and Chirality ( )0 ≤ τH, τA < ∞



• The currents and the energy-momentum tensor get dissipative contributions, whose 
dynamics is not fixed by the conservation equations. 

• A causal theory calls for second order hydro. For illustrative purposes we use 1st order.  

• We implement dissipation through relaxation time approximation 

and the diss. terms                                                                         under f → δf

Dissipative Effects

[Fotakis, Molnar, Niemi, 
Greiner, Rischke (2022)]


