

KORK ERKER ADAM ADA

3D Baryon crystal from the chiral anomaly

Geraint W. Evans

based on GWE and A. Schmitt, JHEP 09 (2022) and JHEP 41 (2024)

QCD Phase Diagram extended along the B-axis

イロト イ押ト イヨト イヨト ÷, 299

Chiral Perturbation Theory with chiral anomaly

 $N_f = 2$ ChPT, electromagnetism and the chiral anomaly (WZW term) [J. Wess and B. Zumino, PLB 37 (1971); E. Witten, NPB 223 (1983)]

$$
\mathcal{L} = \frac{f_{\pi}^2}{4} \text{Tr} \left[\nabla_{\mu} \Sigma^{\dagger} \nabla^{\mu} \Sigma \right] + \frac{m_{\pi}^2 f_{\pi}^2}{4} \text{Tr} \left[\Sigma + \Sigma^{\dagger} \right] - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \left(A_{\mu}^{B} - \frac{e}{2} A_{\mu} \right) j^{\mu}_{B},
$$

with $SU(2)$ chiral field $\Sigma(\pi^0,\pi^\pm)$, covariant derivative ∇^μ , gauge fields A_μ and $A_\mu^{\cal B}$, and anomalous baryon current [J. Goldstone and F. Wilczek, PRL 47 (1981)]

$$
j_B^{\mu} = -\frac{\epsilon^{\mu\nu\rho\lambda}}{24\pi^2} \text{Tr}\Big[(\Sigma \nabla_{\nu} \Sigma^{\dagger}) (\Sigma \nabla_{\rho} \Sigma^{\dagger}) (\Sigma \nabla_{\lambda} \Sigma^{\dagger}) + \frac{3ie}{4} F_{\nu\rho} \tau_3 (\Sigma \nabla_{\lambda} \Sigma^{\dagger} + \nabla_{\lambda} \Sigma^{\dagger} \Sigma) \Big]
$$

With parametrisation $(\pi^0,\pi^\pm) \to (\alpha,\varphi)$,

$$
A^B_\mu j^\mu_B = -\frac{\epsilon^{\mu\nu\rho\lambda}}{4\pi^2} A^B_\mu \partial_\nu \alpha \left(\frac{e}{2} F_{\rho\lambda} + \frac{\partial_\rho j_\lambda}{ef_\pi^2}\right) \,.
$$

 \Rightarrow Electromagnetic and "baryonic" coupling to pions

.

Chiral Soliton Lattice (CSL)

In the absence of π^{\pm} $(\varphi = 0)$ [D. T. Son and M. A. Stephanov, PRD 77 (2008)],

$$
\Omega_0(\boldsymbol{r}) = \frac{f_\pi^2}{2} (\nabla \alpha)^2 - m_\pi^2 f_\pi^2 (\cos \alpha - 1) + \frac{\boldsymbol{B}^2}{2} - \frac{e\mu}{4\pi^2} \nabla \alpha \cdot \boldsymbol{B}
$$

▶ Solution of the α **equation of motion is** [T. Brauner and N. Yamamoto, JHEP 4 (2017)]

$$
\alpha(z,p)=2\arccos\left[-\mathsf{sn}(z,p^2)\right],
$$

where sn (z,ρ^2) is the Jacobi elliptic sine function with elliptic modulus ρ

- \triangleright CSL = "stack of domain walls"
- \blacktriangleright From CSL free energy F_0 , find critical magnetic field

$$
eB_{\text{CSL}}=\frac{16\pi m_{\pi}f_{\pi}^2}{\mu}
$$

KORKARYKERKER POLO

CSL instability to π^{\pm} fluctuations

 \blacktriangleright From the dispersion relation of π^{\pm} fluctuations, determine

$$
eB_{c2} = \frac{m_{\pi}^2}{p^2} \left(2 - p^2 + 2\sqrt{p^4 - p^2 + 1}\right)
$$

from the lowest energy excitation [T. Brauner and N. Yamamoto, JHEP 4 (2017)] p parameterises the instability curve B_{c2}

KORKARYKERKER POLO

[D. T. Son and M. A. Stephanov, PRD 77 (2008)]

What is the phase beyond B_{c2} ?

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

Superconductivity refresher

- \blacktriangleright Instability to π^{\pm} fluctuations implies $condensation \rightarrow$ superconductivity
- ▶ Dispersion relation in chiral limit reminiscent of type-II Flux tube lattice/Normal transition
- \blacktriangleright (Above) $H_{\text{-K}}$ phase diagram where κ is the Ginzburg-Landau parameter
- ▶ (Right) Flux tube profile: ϕ has coherence length ξ , B has penetration depth λ

イロト イ押 トイヨ トイヨ トー

 2990

 \equiv

The main idea

- \triangleright Aim: construct a type-II flux tube lattice near B_{c2} and determine its free energy
- ▶ Strategy: Adopt Abrikosov's approach originally used in Ginzburg-Landau theory [A. A. Abrikosov, Sov. Phys. JETP 5 (1957), W. H. Kleiner et al., PR 133 5A (1964)]

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Abrikosov's approach in ChPT

$$
\blacktriangleright \text{ Expand in small parameter } \epsilon = \sqrt{|\langle B \rangle - B_{c2}|/B_{c2}},
$$
\n
$$
\varphi = \varphi_0 + \delta \varphi + \dots, \quad \mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B} + \dots, \quad \alpha = \alpha_0 + \delta \alpha + \dots
$$

▶ Lowest order equations solved by $\mathbf{B}_0 = B_{c2}(p)\hat{\mathbf{z}}$,

$$
\alpha_0(z,p) = 2 \arccos \left[-\mathrm{sn}(z,p^2) \right], \quad \varphi_0(x,y,z,p) = f_0(z,p)\phi_0(x,y)
$$

 \blacktriangleright Move to Fourier space to find $\delta \mathbf{B}$, $\delta \alpha$, and determine the free energy up to ϵ^4 ,

$$
F\simeq F_0-\frac{\mathcal{G}(\rho)^2}{2}\frac{(\langle B\rangle-B_{c2})^2}{(2\kappa^2-1)\beta+1+2(\mathcal{H}_1-\mathcal{H}_2)},
$$

where $G(p)$ contains elliptic integrals, $\mathcal{H}_{1,2}$ are Fourier sums, and

$$
\beta \equiv \frac{\langle |\phi_0|^4 \rangle}{\langle |\phi_0|^2 \rangle^2}
$$

KORKARYKERKER POLO

where ⟨...⟩ denotes a spatial average

Baryon number density (1/4)

 $\ket{\mathit{e}(B)} \gg m_\pi^2$: comparable to chiral limit

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Baryon number density (2/4)

 $\ket{\mathrm{e}\langle B}\gtrsim 3m_\pi^2$: z-dependence of π^\pm condensate is significant

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Baryon number density (3/4)

As $e\langle B\rangle$ approaches 3 m_π^2 from above, separation between "layers" increases

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Baryon number density (4/4)

 $e\langle B\rangle\simeq 3m_\pi^2$: domain wall limit

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Is it preferred over CSL?

$$
\left|F \simeq F_0 + \Delta f \left(\left\langle B \right\rangle - B_{c2} \right)^2 \right|
$$

- Minimum of Δf at lattice spacing $=1/$ √ 3 for all $\rho \rightarrow$ hexagonal lattice
- ▶ $\Delta f < 0$ for $\mu \lesssim 910 \,\mathrm{MeV}$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

We have constructed a phase which is preferred over the CSL for $e\langle B \rangle \gtrsim 0.12 \, \text{GeV}^2$ and $\mu \lesssim 910 \text{MeV}!$

Phase diagram - Results

イロト イ部 トイ君 トイ君 トー

÷,

 299

- ▶ Solid blue line: 3D crystal is preferred over CSL
- ▶ Dashed blue line: 3D crystal is *not* preferred over CSL

Phase diagram - Conjecture

Region where our solution is not preferred but CSL is unstable implies earlier discontinuous transition

Nuclear matter liquid-gas phase transition at $\mu \simeq 922.7$ MeV, $B = 0$

KORKARYKERKER POLO

Summary

- \blacktriangleright In the μ - B plane at $\mathcal{T}=0$, the CSL phase instability to π^{\pm} fluctuations implies π^{\pm} condense to a superconducting phase
- ▶ Adapting Abrikosov's original calculation, we constructed a superconducting flux tube lattice which lowers the free energy of the CSL phase for $e\langle B \rangle \gtrsim 0.12 \,\text{GeV}^2$, $\mu \lesssim 910 \,\text{MeV}$

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

▶ Baryon number density is non-zero and inhomogeneous with periodicity in $(x, y, z) \rightarrow 3D$ Baryon crystal

Outlook

- ▶ Domain wall skyrmions also a candidate phase competition or connection? [M. Eto et al., JHEP 12 (2023)]
- \triangleright We could try to: Look at lattice away from B_{c2} numerically, include **baryons, go to** $T \neq 0$ [T. Brauner and H. Kolešová, JHEP 07 (2023)]
- \triangleright Can we extend our results to other planes e.g. μ_1-B plane plane? [P. Adhikari et al., PRC 91 (2015); M. S. Grønli and T. Brauner, Eur. Phys. J. C 82 (2022); Z. Qiu, M. Nitta, JHEP 139 (2024)]

KORKARYKERKER POLO

Back-up slides

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Free energy density

 \blacktriangleright Use parametrisation $\pi^0, \pi^{\pm} \to \alpha, \varphi$

 \triangleright Dropping time-dependence, the thermodynamic potential is

$$
\Omega(r) = \left| \left[\nabla - i \left(e \mathbf{A} + \nabla \alpha \right) \right] \varphi \right|^2 + \frac{\left(\nabla |\varphi|^2 \right)^2}{2 \left(f_\pi^2 - 2 |\varphi|^2 \right)} + \frac{f_\pi^2 - 2 |\varphi|^2}{2} \left(\nabla \alpha \right)^2
$$

$$
- m_\pi^2 f_\pi \sqrt{f_\pi^2 - 2 |\varphi|^2} \cos \alpha + \frac{\mathbf{B}^2}{2} - \mu n_\beta \left(r \right),
$$

where $\mathbf{B} = \nabla \times \mathbf{A}$, and

$$
n_B(\mathbf{r}) = \frac{e\nabla\alpha \cdot \mathbf{B}}{4\pi^2} + \frac{\nabla\alpha \cdot \nabla \times \mathbf{j}}{4\pi^2 e f_\pi^2}
$$

is the baryon number density with electromagnetic current j

Equations of motion

From the Lagrangian/free energy we obtain the equations of motion for φ , **A** and α

$$
\left[\mathcal{D} + \frac{\nabla^2 |\varphi|^2}{f_\pi^2 - 2|\varphi|^2} + \frac{(\nabla |\varphi|^2)^2}{\left(f_\pi^2 - 2|\varphi|^2\right)^2} + m_\pi^2 \cos \alpha \left(1 - \frac{f_\pi}{\sqrt{f_\pi^2 - 2|\varphi|^2}}\right)\right] \varphi = 0,
$$

$$
\nabla \times \mathcal{B} = -ie \left(\varphi^* \nabla \varphi - \varphi \nabla \varphi^*\right) - 2e \left(\mathbf{e} \mathbf{A} + \nabla \alpha\right) |\varphi|^2,
$$

$$
\nabla \cdot \left[\left(1 - \frac{2|\varphi|^2}{f_\pi^2}\right) \nabla \alpha\right] = m_\pi^2 \sqrt{1 - \frac{2|\varphi|^2}{f_\pi^2}} \sin \alpha,
$$

respectively, where

 $\mathcal{D}\equiv\nabla^2-i\nabla\cdot(\bm{e}\bm{A}+\nabla\alpha)-2i\left(\bm{e}\bm{A}+\nabla\alpha\right)\cdot\nabla-\left(\bm{e}\bm{A}+\nabla\alpha\right)^2+\left(\nabla\alpha\right)^2-m_\pi^2\cos\alpha\,.$

CSL π^{\pm} instability

► Linearise EoMs in φ and use product ansatz $\varphi = e^{-i\omega t} g(x, y) f(z)$ to find the (z-dependent) dispersion relation [T. Brauner and N. Yamamoto, JHEP 4 (2017)]

$$
w^{2} = (2l + 1) eB - \frac{m_{\pi}^{2}}{p^{2}} \left[4 + p^{2} - 6p^{2} \sin^{2}(\bar{z}, p^{2}) \right] - f^{-1} \partial_{z}^{2} f,
$$

where $g(x, y)$ is the solution to Schrödinger equation for the quantum harmonic oscillator

 \triangleright Above can be cast into a Lamé equation with lowest eigenvalue

$$
\varepsilon_0=2(1+p^2-\sqrt{p^4-p^2+1})
$$

and corresponding eigenfunction

$$
f_0(z) = \frac{1}{N(\rho)} \left(\frac{\sqrt{\rho^4 - \rho^2 + 1} + 1 - 2\rho^2}{3\rho^2} + \sin^2 \frac{\alpha}{2} \right) ,
$$

where $N(p)$ is a normalisation factor

parameter and lattice configurations

- Minimise $\beta \rightarrow$ minimise F
- Depends on periodicity condition $C_n = C_{n+N}$
- Explore a continuum of geometries with $N = 2$ and $C_0 = \pm iC_1$ [W. H. Kleiner et al., PR 133 5A (1964)]

Figure: $R = L_x/L_y$. Left: Red dots correspond to contour plots on the right. *Right*: $|\phi_0(x, y)|^2$ in the x-y plane. Dark regions correspond to flux tubes.

Abrikosov's calculation in Ginzburg-Landau theory

▶ Near second order phase transition \rightarrow expand ϕ and \bm{B} in small parameter $\epsilon \sim \sqrt{B_{c2}-B}$

$$
\phi = \phi_0 + \delta\phi + \dots, \quad \mathbf{B} = \mathbf{B}_0 + \delta\mathbf{B} + \dots,
$$

$$
\Rightarrow \phi_0(x, y) = \sum_{n=-\infty}^{\infty} C_n e^{inqy} e^{-\frac{eB_{c2}}{2}(x - \frac{nq}{eB_{c2}})^2}, \quad \mathbf{B} \simeq (\text{const.} - |\phi_0(x, y)|^2) \hat{\mathbf{z}}
$$

 \triangleright With unit cell lengths L_x , L_y , L_z , introduce

$$
\langle f(\mathbf{r})\rangle \equiv \frac{1}{L_x}\frac{1}{L_y}\frac{1}{L_z}\int_0^{L_x}dx\int_0^{L_y}dy\int_0^{L_z}dz\,f(\mathbf{r})
$$

and parameter

$$
\beta \equiv \frac{\langle |\phi_0|^4 \rangle}{\langle |\phi_0|^2 \rangle^2}
$$

▶ Minimised free energy up to and including ϵ^4 terms is

$$
F \simeq \frac{\langle B \rangle^2}{2} - \frac{1}{2} \frac{\left(B_{c2} - \langle B \rangle\right)^2}{\left(2\kappa^2 - 1\right)\beta + 1}
$$

KORKARYKERKER POLO

Warm-up: chiral Limit

▶ Adapt Abrikosov's expansion with $\epsilon \equiv \sqrt{|\langle B \rangle - B_{c2}|/B_{c2}}$ [A. A. Abrikosov, Sov. Phys. JETP 5 (1957)]:

$$
\varphi = \varphi_0 + \delta \varphi + \dots, \quad \mathbf{A} = \mathbf{A}_0 + \delta \mathbf{A} + \dots, \quad \alpha = \alpha_0 + \delta \alpha + \dots
$$

▶ At leading order

$$
B_0 = B_{c2} \hat{e}_z, \quad \alpha_0(z) = \frac{e\mu}{4\pi^2 f_\pi^2} B_{c2} z,
$$

$$
\varphi_0(x, y) = \sum_{n=-\infty}^{\infty} C_n e^{inqy} e^{-\frac{eB_{c2}}{2}(x - \frac{nq}{eB_{c2}})^2} \equiv \phi_0(x, y)
$$

 \blacktriangleright Next-to-leading order correction to **B** and α become

$$
\delta \boldsymbol{B}(x, y) = \left[\langle B \rangle - B_{c2} + e \left(\langle |\varphi_0(x, y)|^2 \rangle - |\varphi_0(x, y)|^2 \right) \right] \hat{\boldsymbol{e}}_z,
$$

$$
\delta \alpha(z) = \frac{e\mu}{4\pi^2 f_\pi^2} \left(\langle B \rangle - B_{c2} \right) z
$$

Introduce the average over unit cell lengths L_x , L_y , L_z ;

$$
\langle f(\boldsymbol{r}) \rangle_{x,y,z} \equiv \frac{1}{L_x} \frac{1}{L_y} \frac{1}{L_z} \int_0^{L_x} dx \int_0^{L_y} dy \int_0^{L_z} dz \, f(\boldsymbol{r})
$$

B

 $2Q$

Warm-up: chiral Limit

 \triangleright Do not solve $\delta\varphi$ equation, use instead to show

$$
e\langle |\varphi_0|^2 \rangle_{x,y,z} = \frac{\langle B \rangle - B_{c2}}{(2\kappa^2 - 1)\beta + 1}, \quad \text{where} \quad \beta = \frac{\langle |\varphi_0|^4 \rangle_{x,y,z}}{(\langle |\varphi_0|^2 \rangle_{x,y,z})^2},
$$

and $\kappa = \sqrt{eB_{c2}}/$ √ 2 $e f_\pi$ is an effective Ginzburg-Landau parameter ▶ Up to and including ϵ^4 terms,

$$
F \simeq F_0 + \Delta f (\langle B \rangle - B_{c2})^2 ,
$$

where F_0 is calculated in the chiral limit and

$$
\Delta f = -\frac{1}{2}\frac{1}{(2\kappa^2-1)\beta+1}
$$

We have constructed a phase which is preferred above B_{c2} in the chiral limit!

Charged pion condensate and baryon number density Oscillation in baryon number density comes primarily from the vorticity

term $\nabla \times \bm{j} \simeq e \nabla^2 |\varphi_0|^2 \hat{\bm{e}}_{\bm{z}}.$

Figure: Charged pion vortex lattice (left) and local baryon number density (right).

KORK EXTERNE PROVIDE

Single domain wall

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Free energy with a domain wall

▶ First order solution becomes

$$
\varphi_0(x,y,z)=\frac{\phi_0(x,y)}{\cosh^2{(m_{\pi}z)}}
$$

Derive semi-analytical results in Fourier space for $\delta \alpha$ and $\delta \bm{B}$ to obtain

$$
F \simeq F_{\rm DW} - \frac{2}{3m_\pi} \frac{\left(B_{c2} - \langle B \rangle\right)^2}{D(\beta)},
$$

where \mathcal{F}_{DW} is the domain wall free energy and $D(\beta)$ must be evaluated numerically

▶ Find $D < 0$ for physical values of m_{π} , e, and f_{π}

Single domain wall CSL preferred over superconducting baryon crystal below B_{c2}

Massive calculation: leading order

► Similar expansion scheme with $\epsilon = \sqrt{|\langle B \rangle - B_{c2}|/B_{c2}}$.

 $\varphi = \varphi_0 + \delta \varphi + \dots$, $\mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B} + \dots$, $\alpha = \alpha_0 + \delta \alpha + \dots$

▶ Lowest order equations solved by $B_0 = B_{c2}(p)\hat{z}$,

$$
\alpha_0(z,p) = 2 \arccos \left[-\operatorname{sn}(z,p^2) \right], \quad \varphi_0(x,y,z) = f_0(z)\phi_0(x,y)
$$

(where $f_0(z)$ is the "lowest energy" eigenfunction of the Lamé equation) ▶ Solve remaining EoMs in Fourier space with

$$
|\phi_0(x,y)|^2=\sum_{\mathbf{k}_{\perp}}e^{i\mathbf{k}_{\perp}\cdot\mathbf{r}}\hat{\omega}(\mathbf{k}_{\perp}),\quad f_0(z)^2=\sum_{k_z}e^{ik_z z}\hat{s}(k_z),
$$

where $\mathbf{k}_{\perp} = (k_{x}, k_{y}, 0)$ and

$$
\hat{\omega}(\mathbf{k}_{\perp}) = \langle e^{-i\mathbf{k}_{\perp}\cdot\mathbf{r}}|\phi_0(x,y)|^2\rangle_{x,y}, \quad \hat{s}(k_z) = \langle e^{-ik_zz}f_0(z)^2\rangle_z
$$

KELK KØLK VELKEN EL 1990

Massive calculation: $\delta \vec{B}$

▶ Use Coulomb gauge $\nabla \cdot \delta \mathbf{A} = 0$ and Fourier series ansatz

$$
\delta \mathbf{A} = c \mathbf{x} \hat{\mathbf{y}} + \sum_{\mathbf{k}} e^{-i\mathbf{k} \cdot \mathbf{r}} \delta \hat{\mathbf{A}}(\mathbf{k}) \Rightarrow \delta \mathbf{B} = c \hat{\mathbf{z}} + \sum_{\mathbf{k}} e^{-i\mathbf{k} \cdot \mathbf{r}} \delta \hat{\mathbf{B}}(\mathbf{k})
$$

where $\mathbf{k} = (k_x, k_y, k_z)$ and c is a constant

▶ Solutions in Fourier space are

$$
\delta \hat{B}_x(\mathbf{k}) = \frac{k_x k_z}{k^2} e \hat{s}(k_z) \hat{\omega}(\mathbf{k}_{\perp}),
$$

$$
\delta \hat{B}_y(\mathbf{k}) = \frac{k_y k_z}{k^2} e \hat{s}(k_z) \hat{\omega}(\mathbf{k}_{\perp}),
$$

$$
\delta \hat{B}_z(\mathbf{k}) = -\frac{k_{\perp}^2}{k^2} e \hat{s}(k_z) \hat{\omega}(\mathbf{k}_{\perp})
$$

▶ Determine c from boundary condition $\langle B \rangle \equiv \langle B_z \rangle_{x,y}$

$$
\Rightarrow c = \langle B \rangle - B_{c2} + e\hat{\omega}_0 , \quad \text{where} \quad \hat{\omega}_0 \equiv \hat{\omega}(\mathbf{0})
$$

Massive calculation: $\delta \alpha$

▶ Extend CSL solution from p at B_{c2} , to $p + \delta p$ at $\langle B \rangle \rightarrow$ Topological $contribution + Fourier series ansatz$

$$
\delta\alpha = \alpha_1 \delta p + \frac{\omega_0}{f_\pi^2} \delta\alpha_1 , \quad \text{with} \quad \delta\alpha_1 = \sum_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{r}} \delta\hat{\alpha}(\mathbf{k})
$$

and

$$
\alpha_1=\frac{\partial \alpha_0}{\partial p}=-\frac{\mathcal{E}(\bar{z},p^2)\partial_{\bar{z}}\alpha_0+\partial_{\bar{z}}^2\alpha_0}{p(1-p^2)}\,,\quad \delta p=-\frac{pE(p^2)}{K(p^2)}\frac{\langle B\rangle-B_{c2}}{B_{c2}}+\mathcal{O}(\epsilon^4)\,,
$$

where \bar{z} is dimensionless z, $\mathcal E$ is the Jacobi epsilon function, and K and E are the complete elliptic integrals of the first and second kind respectively

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

▶ Inhomogeneous differential equation reduces to a coupled set of linear equations that must be solved to obtain $\delta \hat{\alpha}(\mathbf{k})$

Free energy

 \triangleright Do not solve $\delta\varphi$ equation, use instead to show

$$
\langle |\varphi_0|^2\rangle_{x,y,z} = \mathsf{e}\hat\omega_0 = \mathcal{G}(\rho)\frac{\langle B\rangle - B_{\mathsf{c}2}}{(2\kappa^2-1)\beta+1+2(\mathcal{H}_1-\mathcal{H}_2)},
$$

where $\mathcal{H}_{1,2}$ are infinite sums over **k** and κ depends on p

- \blacktriangleright $\mathcal{G}(p)$ related to $eB_{c2}(\mu)$ "turning point"
- ▶ Up to and including ϵ^4 terms,

$$
F \simeq F_0 + \Delta f (\langle B \rangle - B_{c2})^2 ,
$$

where

$$
\Delta f = -\frac{\mathcal{G}^2}{2} \frac{1}{(2\kappa^2 - 1)\beta + 1 + 2(\mathcal{H}_1 - \mathcal{H}_2)}
$$