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What does it look like in this plane?



Chiral Perturbation Theory with chiral anomaly

Nf = 2 ChPT, electromagnetism and the chiral anomaly (WZW term) [J. Wess and

B. Zumino, PLB 37 (1971); E. Witten, NPB 223 (1983)]
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with SU(2) chiral field Σ(π0, π±), covariant derivative ∇µ, gauge fields Aµ and
AB
µ , and anomalous baryon current [J. Goldstone and F. Wilczek, PRL 47 (1981)]
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With parametrisation (π0, π±) → (α,φ) ,
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⇒ Electromagnetic and “baryonic” coupling to pions



Chiral Soliton Lattice (CSL)

▶ In the absence of π± (φ = 0) [D. T. Son and M. A. Stephanov, PRD 77 (2008)],
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▶ Solution of the α equation of motion is [T. Brauner and N. Yamamoto, JHEP 4 (2017)]

α(z , p) = 2 arccos
[
−sn(z , p2)

]
,

where sn(z , p2) is the Jacobi elliptic sine function with elliptic modulus p
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▶ CSL = “stack of domain walls”

▶ From CSL free energy F0, find
critical magnetic field

eBCSL =
16πmπf

2
π

µ



CSL instability to π± fluctuations

▶ From the dispersion relation of π± fluctuations, determine

eBc2 =
m2

π

p2

(
2− p2 + 2

√
p4 − p2 + 1

)
from the lowest energy excitation [T. Brauner and N. Yamamoto, JHEP 4 (2017)]

▶ p parameterises the instability curve Bc2

chiral limit (p → 0):

eBc2 =
16π4f 4π
µ2

domain wall (p → 1):

eBc2 = 3m2
π

[D. T. Son and M. A. Stephanov, PRD 77 (2008)]



What is the phase beyond Bc2?



Superconductivity refresher
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fluctuations implies
condensation →
superconductivity

▶ Dispersion relation in
chiral limit reminiscent of
type-II Flux tube
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▶ (Above) H-κ phase diagram where
κ is the Ginzburg-Landau
parameter
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The main idea

▶ Aim: construct a type-II flux tube lattice near Bc2 and
determine its free energy

▶ Strategy: Adopt Abrikosov’s approach originally used in
Ginzburg-Landau theory [A. A. Abrikosov, Sov. Phys. JETP 5 (1957),W. H. Kleiner et al., PR

133 5A (1964)]



Abrikosov’s approach in ChPT

▶ Expand in small parameter ϵ =
√
|⟨B⟩ − Bc2|/Bc2,

φ = φ0 + δφ+ . . . , B = B0 + δB + . . . , α = α0 + δα+ . . .

▶ Lowest order equations solved by B0 = Bc2(p)ẑ ,

α0(z , p) = 2 arccos
[
−sn(z , p2)

]
, φ0(x , y , z , p) = f0(z , p)ϕ0(x , y)

▶ Move to Fourier space to find δB, δα, and determine the free energy up to
ϵ4,

F ≃ F0 −
G(p)2

2

(⟨B⟩ − Bc2)
2

(2κ2 − 1)β + 1+2(H1 −H2)
,

where G(p) contains elliptic integrals, H1,2 are Fourier sums, and

β ≡ ⟨|ϕ0|4⟩
⟨|ϕ0|2⟩2

where ⟨...⟩ denotes a spatial average



Baryon number density (1/4)

nB n0

16.20
16.38
16.56
16.74
16.92
17.10
17.28
17.46
17.64
17.82

e⟨B⟩ ≫ m2
π : comparable to chiral limit



Baryon number density (2/4)

nB n0

3.102
3.168
3.234
3.300
3.366
3.432
3.498
3.564
3.630
3.696

e⟨B⟩ ≳ 3m2
π : z-dependence of π± condensate is significant



Baryon number density (3/4)

nB n0

0.84
0.96
1.08
1.20
1.32
1.44
1.56
1.68
1.80
1.92

As e⟨B⟩ approaches 3m2
π from above, separation between “layers” increases



Baryon number density (4/4)

nB n0

0.141
0.188
0.235
0.282
0.329
0.376
0.423
0.470
0.517
0.564

e⟨B⟩ ≃ 3m2
π : domain wall limit



Is it preferred over CSL?

F ≃ F0 +∆f (⟨B⟩ − Bc2)
2

▶ Minimum of ∆f at lattice
spacing = 1/

√
3 for all p →

hexagonal lattice

▶ ∆f < 0 for µ ≲ 910MeV
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We have constructed a phase which is preferred over the CSL for
e⟨B⟩ ≳ 0.12GeV2 and µ ≲ 910MeV!



Phase diagram - Results

▶ Solid blue line: 3D crystal is preferred over CSL

▶ Dashed blue line: 3D crystal is not preferred over CSL



Phase diagram - Conjecture

▶ Region where our solution is not preferred but CSL is unstable
implies earlier discontinuous transition

▶ Nuclear matter liquid-gas phase transition at µ ≃ 922.7MeV, B = 0



Summary

▶ In the µ-B plane at T = 0, the CSL phase instability to π±

fluctuations implies π± condense to a superconducting phase

▶ Adapting Abrikosov’s original calculation, we constructed a
superconducting flux tube lattice which lowers the free energy of the
CSL phase for e⟨B⟩ ≳ 0.12GeV2, µ ≲ 910MeV

▶ Baryon number density is non-zero and inhomogeneous with
periodicity in (x , y , z) → 3D Baryon crystal



Outlook

▶ Domain wall skyrmions also a candidate phase - competition or
connection? [M. Eto et al., JHEP 12 (2023)]

▶ We could try to: Look at lattice away from Bc2 numerically, include
baryons, go to T ̸= 0 [T. Brauner and H. Kolešová, JHEP 07 (2023)]

▶ Can we extend our results to other planes e.g. µI -B plane plane?
[P. Adhikari et al., PRC 91 (2015); M. S. Grønli and T. Brauner, Eur. Phys. J. C 82 (2022); Z. Qiu, M. Nitta, JHEP

139 (2024)]



Back-up slides



Free energy density

▶ Use parametrisation π0, π± → α,φ

▶ Dropping time-dependence, the thermodynamic potential is

Ω (r) =| [∇− i (eA +∇α)]φ|2 +
(
∇|φ|2

)2
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+
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2
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where B = ∇× A, and

nB(r) =
e∇α · B
4π2

+
∇α · ∇ × j
4π2ef 2π

is the baryon number density with electromagnetic current j



Equations of motion

From the Lagrangian/free energy we obtain the equations of motion for φ, A
and α[

D +
∇2|φ|2

f 2π − 2|φ|2
+

(
∇|φ|2

)2
(f 2π − 2|φ|2)2

+m2
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respectively, where

D ≡ ∇2− i∇·(eA +∇α)−2i (eA +∇α) ·∇−(eA +∇α)2+(∇α)2−m2
π cosα .



CSL π± instability

▶ Linearise EoMs in φ and use product ansatz φ = e−iwtg(x , y)f (z) to find
the (z-dependent) dispersion relation [T. Brauner and N. Yamamoto, JHEP 4 (2017)]

w2 = (2l + 1) eB − m2
π

p2
[
4 + p2 − 6p2sn2(z̄ , p2)

]
− f −1∂2

z f ,

where g(x , y) is the solution to Schrödinger equation for the quantum
harmonic oscillator

▶ Above can be cast into a Lamé equation with lowest eigenvalue

ε0 = 2(1 + p2 −
√
p4 − p2 + 1)

and corresponding eigenfunction

f0(z) =
1

N(p)

(√
p4 − p2 + 1 + 1− 2p2

3p2
+ sin2

α

2

)
,

where N(p) is a normalisation factor



β parameter and lattice configurations

▶ Minimise β → minimise F

▶ Depends on periodicity condition Cn = Cn+N

▶ Explore a continuum of geometries with N = 2 and C0 = ±iC1 [W. H. Kleiner et

al., PR 133 5A (1964)]

Figure: R = Lx/Ly . Left: Red dots correspond to contour plots on the right.
Right: |ϕ0(x , y)|2 in the x-y plane. Dark regions correspond to flux tubes.



Abrikosov’s calculation in Ginzburg-Landau theory
▶ Near second order phase transition → expand ϕ and B in small parameter

ϵ ∼
√
Bc2 − B

ϕ = ϕ0 + δϕ+ . . . , B = B0 + δB + . . . ,

⇒ ϕ0(x , y) =
∞∑

n=−∞
Cne

inqye−
eBc2
2 (x− nq

eBc2
)2
, B ≃ (const.− |ϕ0(x , y)|2)ẑ

▶ With unit cell lengths Lx , Ly , Lz , introduce

⟨f (r)⟩ ≡ 1

Lx

1

Ly

1

Lz

∫ Lx

0

dx

∫ Ly

0

dy

∫ Lz

0

dz f (r)

and parameter

β ≡ ⟨|ϕ0|4⟩
⟨|ϕ0|2⟩2

▶ Minimised free energy up to and including ϵ4 terms is

F ≃ ⟨B⟩2

2
− 1

2

(Bc2 − ⟨B⟩)2

(2κ2 − 1)β + 1



Warm-up: chiral Limit
▶ Adapt Abrikosov’s expansion with ϵ ≡

√
|⟨B⟩ − Bc2|/Bc2 [A. A. Abrikosov, Sov.

Phys. JETP 5 (1957)]:

φ = φ0 + δφ+ . . . , A = A0 + δA + . . . , α = α0 + δα+ . . .

▶ At leading order

B0 = Bc2êz , α0(z) =
eµ

4π2f 2π
Bc2z ,

φ0(x , y) =
∞∑

n=−∞
Cne

inqye−
eBc2
2 (x− nq

eBc2
)2 ≡ ϕ0(x , y)

▶ Next-to-leading order correction to B and α become

δB(x , y) =
[
⟨B⟩ − Bc2 + e

(
⟨|φ0(x , y)|2⟩ − |φ0(x , y)|2

)]
êz ,

δα(z) =
eµ

4π2f 2π
(⟨B⟩ − Bc2) z

▶ Introduce the average over unit cell lengths Lx , Ly , Lz ;

⟨f (r)⟩x,y ,z ≡
1

Lx

1

Ly

1

Lz

∫ Lx

0

dx

∫ Ly

0

dy

∫ Lz

0

dz f (r)



Warm-up: chiral Limit

▶ Do not solve δφ equation, use instead to show

e⟨|φ0|2⟩x,y ,z =
⟨B⟩ − Bc2

(2κ2 − 1)β + 1
, where β =

⟨|φ0|4⟩x,y ,z
(⟨|φ0|2⟩x,y ,z)2

,

and κ =
√
eBc2/

√
2efπ is an effective Ginzburg-Landau parameter

▶ Up to and including ϵ4 terms,

F ≃ F0 +∆f (⟨B⟩ − Bc2)
2
,

where F0 is calculated in the chiral limit and

∆f = −1

2

1

(2κ2 − 1)β + 1

We have constructed a phase which is preferred above Bc2 in the chiral
limit!



Charged pion condensate and baryon number density
Oscillation in baryon number density comes primarily from the vorticity
term ∇× j ≃ e∇2|φ0|2êz .

Figure: Charged pion vortex lattice (left) and local baryon number density
(right).



Single domain wall

▶ Instability now occurs at

B ≤ Bc2 =
3m2

π
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▶ Single domain wall CSL

α0(z) = 4 arctan (emπz)



Free energy with a domain wall

▶ First order solution becomes

φ0(x , y , z) =
ϕ0(x , y)

cosh2 (mπz)

▶ Derive semi-analytical results in Fourier space for δα and δB to
obtain

F ≃ FDW − 2

3mπ

(Bc2 − ⟨B⟩)2

D(β)
,

where FDW is the domain wall free energy and D(β) must be
evaluated numerically

▶ Find D < 0 for physical values of mπ, e, and fπ

Single domain wall CSL preferred over superconducting baryon crys-
tal below Bc2



Massive calculation: leading order

▶ Similar expansion scheme with ϵ =
√
|⟨B⟩ − Bc2|/Bc2:

φ = φ0 + δφ+ . . . , B = B0 + δB + . . . , α = α0 + δα+ . . .

▶ Lowest order equations solved by B0 = Bc2(p)ẑ ,

α0(z , p) = 2 arccos
[
−sn(z , p2)

]
, φ0(x , y , z) = f0(z)ϕ0(x , y)

(where f0(z) is the “lowest energy” eigenfunction of the Lamé equation)

▶ Solve remaining EoMs in Fourier space with

|ϕ0(x , y)|2 =
∑
k⊥

e ik⊥·r ω̂(k⊥) , f0(z)
2 =

∑
kz

e ikzz ŝ(kz) ,

where k⊥ = (kx , ky , 0) and

ω̂(k⊥) = ⟨e−ik⊥·r |ϕ0(x , y)|2⟩x,y , ŝ(kz) = ⟨e−ikzz f0(z)
2⟩z



Massive calculation: δB

▶ Use Coulomb gauge ∇ · δA = 0 and Fourier series ansatz

δA = cx ŷ +
∑
k

e−ik·rδÂ(k) ⇒ δB = c ẑ +
∑
k

e−ik·rδB̂(k)

where k = (kx , ky , kz) and c is a constant

▶ Solutions in Fourier space are

δB̂x(k) =
kxkz
k2

eŝ(kz)ω̂(k⊥) ,

δB̂y (k) =
kykz
k2

eŝ(kz)ω̂(k⊥) ,

δB̂z(k) = −k2
⊥
k2

eŝ(kz)ω̂(k⊥)

▶ Determine c from boundary condition ⟨B⟩ ≡ ⟨Bz⟩x,y

⇒ c = ⟨B⟩ − Bc2 + eω̂0 , where ω̂0 ≡ ω̂(0)



Massive calculation: δα

▶ Extend CSL solution from p at Bc2, to p + δp at ⟨B⟩ → Topological
contribution + Fourier series ansatz:

δα = α1δp +
ω0

f 2π
δα1 , with δα1 =

∑
k

e−ik·rδα̂(k)

and

α1 =
∂α0

∂p
= −E(z̄ , p2)∂z̄α0 + ∂2

z̄α0

p(1− p2)
, δp = −pE (p2)

K (p2)

⟨B⟩ − Bc2

Bc2
+O(ϵ4) ,

where z̄ is dimensionless z , E is the Jacobi epsilon function, and K and E
are the complete elliptic integrals of the first and second kind respectively

▶ Inhomogeneous differential equation reduces to a coupled set of linear
equations that must be solved to obtain δα̂(k)



Free energy

▶ Do not solve δφ equation, use instead to show

⟨|φ0|2⟩x,y ,z = eω̂0 = G(p) ⟨B⟩ − Bc2

(2κ2 − 1)β + 1 + 2(H1 −H2)
,

where H1,2 are infinite sums over k and κ depends on p

▶ G(p) related to eBc2(µ) “turning point”

▶ Up to and including ϵ4 terms,

F ≃ F0 +∆f (⟨B⟩ − Bc2)
2
,

where

∆f = −G2

2

1

(2κ2 − 1)β + 1 + 2(H1 −H2)


