Hyperon polarization along the beam direction in pPb collisions at 8.16 TeV

CMS-PAS-HIN-24-002

Chenyan Li (李辰艳), for the CMS collaboration

Shandong University (山东大学)

8th International Conference on Chirality, Vorticity, and Magnetic Field in Quantum Matter July 22 - 26, 2024, Timisoara, Romania

Hyperon polarization along beam direction

The collective flow generates non-zero vorticity along the beam (z) direction Non-zero vorticity results in particle polarization via spin-orbit coupling

Hyperon polarization along beam direction

Hyperon weak decay is a simple and direct probe of polarization Quadrupole structure of polarization observed

Significant P_z signal w.r.t 2nd-order and 3rd-order event plane observed in AA collisions Indication of correlation between flow and polarization

Hyperon polarization along beam direction in small systems?

Similar collective feature in high-multiplicity pp and pPb collisions Is a QGP droplet created in smaller collision systems? Can Hyperon polarization along beam direction be observed?

Λ reconstruction in pPb collisions

8.16 TeV pPb data collected by CMS experiment with $L_{int} = 186 \text{ nb}^{-1}$

Multiplicity interval (N ^{offline})	$\langle N_{\rm trk}^{\rm offline} \rangle$	$\langle N_{\rm trk}^{\rm corrected} \rangle$
[3, 60)	40.0	48.5 ± 1.9
[60, 120)	86.7	105.3 ± 4.2
[120, 150)	132.7	161.2 ± 6.4
[150, 185]	163.6	198.7 ± 7.9
[185,250]	203.3	246.9 ± 9.9

 $\langle N_{trk}^{offline} \rangle$: average track multiplicity ($p_T > 0.4 \ GeV$, $|\eta| < 2.4$), requiring at least one reconstructed Λ ($\overline{\Lambda}$) candidate in event.

 $\langle N_{trk}^{corrected} \rangle$: $\langle N_{trk}^{offline} \rangle$ after efficiency correction.

Hyperon polarization extraction

Hyperon polarization extraction

 $P_{z,s2}$ in pPb collisions

Crosscheck $-K_s^0$

 $P_{z,s2}$ values for K_s^0 (spin-0 particle) are consistent with 0 as expected No strange detector effects

Chenyan LI from Shandong University

11

Cross check – HF event plane

Consistent results w.r.t to forward rapidity event plane No short range/self correlation

Why is it increasing monotonically towards 0 multiplicity?

Not consistent with the trend of v_2

Why is it increasing monotonically towards 0 multiplicity? Not consistent with the trend of v_2 Similar to the behavior for peripheral AA; not captured by hydro?

C. Yi, X.-Y. Wu, J. Zhu, S. Pu and G.-Y. Qin, in preparation

Is it from "ring polarization"?

Jet passing through the "medium" could induce ring polarization Different sensitivity to thermal & shear terms than P_z Projection into x-y plane mimic a P_z wrt jet axis

Is it from "ring polarization"?

Jet passing through the "medium" could induce ring polarization Different sensitivity to thermal & shear terms than P_z Projection into x-y plane mimic a P_z wrt jet axis Jet axis coincide with 2nd order event plane at low multiplicity Diluted towards high multiplicity Should have a eta dependence; no precision to test with current data

Is it from spin physics?

Transverse polarization of Λ has been a long standing puzzle Recent Belle measurement in e⁺e⁻ shows a significant signal wrt thrust axis

Is it from spin physics?

Transverse polarization of Λ has been a long standing puzzle Recent Belle measurement in e⁺e⁻ shows a significant signal wrt thrust axis Projection into x-y plane introduce a P_z wrt thrust axis (n) Thrust axis coincide with 2nd order event plane at low multiplicity Opposite direction than our signal; but could have a z_{Λ} dependence Diluted towards high multiplicity

Different contributions vs multiplicity?

A naïve guess of the picture Where is the switching point and what does it mean for AA?

Summary

- First measurement of hyperon polarization along the beam direction in pPb collisions
- Significant positive $P_{z,s2}$ observed for the entire multiplicity range from 3 to 250
- $P_{z,s2}$ decrease as function of multiplicity, which is not consistent with hydro expectation
- $P_{z,s2}$ increase as function of p_T
- The results might indicate complex vorticity structures in pPb collisions
- It remains to be seen how different polarization mechanisms contribute to the observed signal CMS-PAS-HIN-24-002

Thanks

Backup

The number of events:

$N_{trk}^{offline}$	3-60	60-120	120-150	150-185	185-250
Events	270M	426M	58M	56M	280M

P_T dependence in pPb and PbPb

More details of hydro calculations in pPb

More details of hydro calculations in pPb

