On Confidence Intervals for Randomized Quasi-Monte Carlo Estimators

Bruno Tuffin (based on joint works with P. L'Ecuyer, M. Nakayama and A. Owen)

Inria

Atelier d'évaluation de performance, 2024

Review: Monte Carlo (MC)

• MC: random sampling to estimate $\mu = \mathbb{E}[h(U)]$ with $U \sim \mathcal{U}[0, 1]^s$

$$
\widehat{\mu}_n^{\text{MC}} = \frac{1}{n} \sum_{i=1}^n h(U_i)
$$

 U_1, U_2, \ldots, U_n i.i.d. $\mathcal{U}[0, 1]^s$

 200

4 0 8

Review: MC — Error Estimation Easy, But Slow Convergence

MC estimator: $\widehat{\mu}_{n}^{\textsf{MC}} = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n h(U_i)$

CLT: If $\psi^2 \equiv \text{Var}[h(U)] \in (0,\infty)$, then [Billingsley 1995]

$$
\sqrt{\frac{n}{\psi^2}} \left[\widehat{\mu}_n^{\text{MC}} - \mu \right] \implies \mathcal{N}(0,1) \quad \text{as } n \to \infty
$$

• Approximate 100 γ % confidence interval (CI) for μ :

$$
I_{n,\gamma}^{\text{MC}} \equiv \left[\widehat{\mu}_n^{\text{MC}} \pm z_{\gamma} \frac{\widehat{\psi}_n}{\sqrt{n}} \right]
$$

 $\hat{\psi}_n^2 = \frac{1}{n-1} \sum_{i=1}^n \left[h(U_i) - \hat{\mu}_n^{\text{MC}} \right]^2$ and $\Phi(z_\gamma) = 1 - (1 - \gamma)/2$.

Asymptotically valid CI (AVCI):

$$
\mathbb{P}(\mu \in I_{n,\gamma}^{\text{MC}}) \rightarrow \gamma, \text{ as } n \rightarrow \infty
$$

Root mean-squared error: $RMSE\left[\widehat{\mu}_{n}^{MC}\right] = \frac{\psi}{\sqrt{n}}$

Review: Quasi-Monte Carlo (QMC)

• QMC: deterministic points to estimate $\mu = \mathbb{E}[h(U)]$

$$
\widehat{\mu}_n^{\mathsf{Q}} = \frac{1}{n} \sum_{i=1}^n h(\xi_i)
$$

- Low-discrepancy sequence $\Xi=(\xi_i:i=1,2,\ldots)$
	- \blacktriangleright \equiv is deterministic and evenly fill $[0, 1]$ ^s
	- \triangleright lattices (e.g., Korobov, ...), Digital nets/sequences (e.g., Sobel', Faure, ...)

B. Tuffin (Intervals for RQMC 2024 5/23

э

 299

← ロ ▶ → イ 円

4 0 8

⊣● 向

 299

 299

← ロ ▶ → イ 円

4 0 8

→ 向

 299

 299

4 ロ ▶ (母

4 0 8

4 点

つへへ

 299

← ロ ▶ → イ 円

4 0 8

⊣● 向

4 0 8

→ 向

Review: QMC — Fast Convergence, But Error Estimation Difficult

• QMC: deterministic points to estimate $\mu = \mathbb{E}[h(U)]$

$$
\widehat{\mu}_n^{\mathsf{Q}} = \frac{1}{n} \sum_{i=1}^n h(\xi_i), \qquad \Xi = (\xi_i : i = 1, 2, \ldots)
$$

• Koksma-Hlawka (K-H) inequality [Niederreiter 1992]: for each $n > 1$,

$$
|\widehat{\mu}_n^{\mathsf{Q}} - \mu| \leq V_{\mathrm{HK}}(h) D_n^*(\Xi)
$$

- ▶ Hardy-Krause variation $V_{HK}(h) \in [0,\infty]$: "roughness" of h
- ▶ Star-discrepancy $D_n^*(\Xi) \in [0,1]$: how unevenly first *n* points of Ξ fill $[0,1]^s$

$$
D_n^*(\Xi) = O\left(n^{-1}(\ln n)^s\right) \approx O\left(n^{-1}\right), \quad n \to \infty.
$$

► If $V_{\rm HK}(h)<\infty$ (BVHK), then K-H bound shrinks at faster rate than MC rate $\Theta(n^{-1/2})$

$$
|\widehat{\mu}_n^{\mathsf{Q}} - \mu| \; \approx \; O\left(n^{-1}\right).
$$

- ★ BVHK: "bounded variation in sense of Hardy and Krause"
- \triangleright But K-H bound not practical
	- [⋆] Difficult to compute, often VHK(h) = ∞, often very loose, . . .

Review: Randomized Quasi-Monte Carlo (RQMC)

- i.i.d. randomizations of $\Xi=(\xi_i:i\geq1)$, each yielding $\Xi'=(\mathit{U}'_i:i\geq1)$
	- ► Each $U'_i \sim \mathcal{U}[0,1]^s$
	- \blacktriangleright Ξ' retains low-discrepancy properties of Ξ
- Lattice: random shift [Cranley & Patterson 1976]

Digital net: nested scrambling [Owen 1995], digital shift [L'Ecuyer & Lemieux 2002], ...

- K 로 베 K 로 로 베 프

Review: Randomized Quasi-Monte Carlo (RQMC)

- RQMC computation budget of n evaluations of h (as for MC)
	- ▶ allocation (m_n, r_n) with $m_n \times r_n \approx n$
	- $r_n = #$ i.i.d. randomizations

▶ $m_n = \#$ points used from j th randomized sequence $\Xi'_j = (U'_{i,j} : i \geq 1), \enskip j = 1,2,\ldots,r_n$

• RQMC: $r_n \geq 2$ i.i.d. **randomizations** to estimate $\mu = \mathbb{E}[h(U)]$

$$
\widehat{\mu}_{m_n,r_n}^{\text{RQ}} = \frac{1}{r_n} \sum_{j=1}^{r_n} X_{n,j}, \quad \text{where} \quad X_{n,j} = \frac{1}{m_n} \sum_{i=1}^{m_n} h(U'_{i,j})
$$

▶ $X_{n,1}, X_{n,2}, \ldots, X_{n,r_n}$ i.i.d.: estimate $\sigma_{m_n}^2 \equiv \text{Var}[X_{n,1}]$ typically $o(m_n^{-1})$ (even $O(m_n^{-2}(\ln m_n)^{2s})$ if BVHK) by

$$
\widehat{\sigma}_{m_n,r_n}^2 = \frac{1}{r_n-1} \sum_{j=1}^{r_n} (X_{n,j} - \widehat{\mu}_{m_n,r_n}^{\textsf{RQ}})^2.
$$

• Approx γ -level CI for μ

$$
I_{m_n,r_n,\gamma}^{\text{RQ}} \equiv \left[\widehat{\mu}_{m_n,r_n}^{\text{RQ}} \pm z_{\gamma} \frac{\widehat{\sigma}_{m_n,r_n}}{\sqrt{r_n}} \right]
$$

 $\blacktriangleright X_{n,1}, X_{n,2}, \ldots, X_{n,r_n}$ i.i.d., but distn of e[a](#page-15-0)ch $X_{n,j}$ depends on n : [Tr](#page-14-0)iang[ula](#page-15-0)r [a](#page-0-0)[rr](#page-1-0)a[y](#page-16-0)[.](#page-0-0)

How to choose RQMC Allocation (m_n, r_n) with $m_n \times r_n \approx n$?

• Heuristic: For given budget n, choose r_n small and $m_n \approx n/r_n$ large to exploit QMC.

► CI:
$$
I_{m_n,r_n,\gamma}^{RQ} \equiv \left[\widehat{\mu}_{m_n,r_n}^{RQ} \pm z_{\gamma} \frac{\widehat{\sigma}_{m_n,r_n}}{\sqrt{r_n}} \right]
$$

- \blacktriangleright $r_n = \#$ i.i.d. randomizations
- \blacktriangleright $m_n = \#$ points used from each randomized sequence
- But heuristic lacks rigorous justification.
- AVCI relies on CLT: not established for many RQMC settings.
	- ▶ Nested scrambling of digital nets: CLT as $m_n = n \rightarrow \infty$, fixed $r_n = 1$ [Loh 2003]
	- ▶ Randomly shifted lattices: **no** CLT as $m_n = n/r_n \to \infty$, **fixed** $r_n \ge 1$ [L'Ecuyer, Munger, T. 2010]
- **Goal:** Sufficient conditions to ensure CLT and AVCI (as $n \to \infty$).

How to choose RQMC Allocation (m_n, r_n) with $m_n \times r_n \approx n$?

• Heuristic: For given budget n, choose r_n small and $m_n \approx n/r_n$ large to exploit QMC.

► CI:
$$
I_{m_n,r_n,\gamma}^{RQ} \equiv \left[\widehat{\mu}_{m_n,r_n}^{RQ} \pm z_{\gamma} \frac{\widehat{\sigma}_{m_n,r_n}}{\sqrt{r_n}} \right]
$$

- \blacktriangleright $r_n = \#$ i.i.d. randomizations
- \blacktriangleright $m_n = \#$ points used from each randomized sequence
- But heuristic lacks rigorous justification.
- AVCI relies on CLT: not established for many RQMC settings.
	- ▶ Nested scrambling of digital nets: CLT as $m_n = n \rightarrow \infty$, fixed $r_n = 1$ [Loh 2003]
	- ▶ Randomly shifted lattices: **no** CLT as $m_n = n/r_n \to \infty$, **fixed** $r_n \ge 1$ [L'Ecuyer, Munger, T. 2010]
- Goal: Sufficient conditions to ensure CLT and AVCI (as $n \to \infty$).
- Assumption 1. "Simple allocation": $(m_n, r_n) = (n^c, n^{1-c})$ for constant $c \in (0,1)$.
	- \triangleright Main Issue: How to choose c ?
	- ▶ More general allocation (m_n, r_n) : $r_n \to \infty$ with $m_n \times r_n \approx n$ as $n \to \infty$.
- **Assumption 2**. $\sigma_{m_n}^2 \equiv \text{Var}[X_{n,1}] > 0$ for all *n* large enough.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 ◆ 9,9,9

RQMC CLT

Theorem

If Assumptions 1 and 2 hold, then RQMC estimator $\widehat{\mu}^{\mathsf{RQ}}_{m_n,r_n}$ satisfies \textsf{CLT}

$$
\sqrt{\frac{r_n}{\sigma_{m_n}^2}}\left[\widehat{\mu}_{m_n,r_n}^{RQ} - \mu\right] \Rightarrow \mathcal{N}(0,1), \quad \text{as } n \to \infty
$$

under either

 $\mathbb{E}\Big[(X_{n,1} - \mu)^2 \,;\, |X_{n,1} - \mu| \,>\, t\, \sqrt{r_n \, \sigma_{m_n}^2} \,\Big]$ $\frac{1}{\mathbb{E}\left[(X_{n,1}-\mu)^2\right]} \rightarrow 0$, as $n\rightarrow\infty$, $\forall t>0$;

or

Lyapounov condition:

Lindeberg condition:

$$
\frac{\mathbb{E}\left[\left|X_{n,1}-\mu\right|^{2+b'}}{r_n^{b'/2}\sigma_{m_n}^{2+b'}}\right] \rightarrow 0, \quad \text{as } n\rightarrow\infty, \text{ for some } b'>0.
$$

 $\sigma_{m_n}^2 = \mathbb{E}[(X_{n,1}-\mu)^2] =$ $\sigma_{m_n}^2 = \mathbb{E}[(X_{n,1}-\mu)^2] =$ $\sigma_{m_n}^2 = \mathbb{E}[(X_{n,1}-\mu)^2] =$ variance of estimator $X_{n,1}$ from single randomization of m_n points. K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0* B. Tuffin (Inria) Confidence Intervals for ROMC 2024 2024 10/23

RQMC Asymptotically Valid CI (AVCI)

• Recall Lyapounov condition:

$$
\frac{\mathbb{E}\left[\left|X_{n,1}-\mu\right|^{2+b'}\right]}{r_n^{b'/2}\sigma_{m_n}^{2+b'}}\rightarrow 0, \text{ as } n\rightarrow\infty, \text{ for some } b'>0.
$$

 $\widehat{\sigma}^2_{m_n,r_n} = \frac{1}{r_n-1} \sum_{j=1}^{r_n} \left(X_{n,j} - \widehat{\mu}_{m_n,r_n}^{\text{RQ}} \right)^2$ is unbiased estimator of $\sigma^2_{m_n} = \text{Var}[X_{n,1}].$

• Approx. γ -level CI for μ

$$
I_{m_n,r_n,\gamma}^{\textsf{RQ}} = \left[\widehat{\mu}_{m_n,r_n}^{\textsf{RQ}} \pm z_{\gamma} \frac{\widehat{\sigma}_{m_n,r_n}}{\sqrt{r_n}} \right]
$$

Theorem

If Assumptions 1 and 2 hold, along with Lyapounov condition for $b' = 2$, then CLT

$$
\sqrt{\frac{r_n}{\widehat{\sigma}_{m_n,r_n}^2}}\left[\widehat{\mu}_{m_n,r_n}^{RQ} - \mu\right] \Rightarrow \mathcal{N}(0,1), \quad \text{as } n \to \infty
$$

and AVCI

$$
P(\mu \in I_{m_n,r_n,\gamma}^{RQ}) \rightarrow \gamma, \text{ as } n \rightarrow \infty.
$$

Corollaries Ensuring CLT or AVCI

• For estimator $X_{n,1}$ from single randomization of m_n points,

$$
\sigma_{m_n} \equiv \sqrt{\text{Var}[X_{n,1}]} \approx \Theta(m_n^{-\alpha_*}) \quad \text{as} \quad m_n \to \infty, \quad \text{where} \quad \alpha_* \equiv -\lim_{m_n \to \infty} \frac{\ln(\sigma_{m_n})}{\ln(m_n)} > \frac{1}{2}
$$

\n $\sum \alpha_* \ge 1$ when $V_{HK}(h) < \infty$ (BVHK).

Under Assumption 1 $\begin{bmatrix} (m_n, r_n) = (n^c, n^{1-c}), & c \in (0,1) \end{bmatrix}$,

$$
\text{RMSE}\left[\widehat{\mu}_{m_n,r_n}^{\text{RQ}}\right] = \frac{\sigma_{m_n}}{\sqrt{r_n}} \approx \Theta\left(n^{-\nu(\alpha_*,c)}\right) \text{ as } n \to \infty, \text{ with } \nu(\alpha_*,c) \equiv c\left[\alpha_* - \frac{1}{2}\right] + \frac{1}{2}.
$$

∢ □ ▶ ∢ 点

 QQ

Corollaries Ensuring CLT or AVCI

• For estimator $X_{n,1}$ from single randomization of m_n points,

$$
\sigma_{m_n} \equiv \sqrt{\text{Var}[X_{n,1}]} \approx \Theta(m_n^{-\alpha_*}) \quad \text{as} \quad m_n \to \infty, \quad \text{where} \quad \alpha_* \equiv -\lim_{m_n \to \infty} \frac{\ln(\sigma_{m_n})}{\ln(m_n)} > \frac{1}{2}
$$

\n $\sum \alpha_* \ge 1$ when $V_{HK}(h) < \infty$ (BVHK).

• Under Assumption 1 [
$$
(m_n, r_n) = (n^c, n^{1-c}), c \in (0, 1)
$$
],

$$
\text{RMSE}\left[\widehat{\mu}_{m_n,r_n}^{\text{RQ}}\right] = \frac{\sigma_{m_n}}{\sqrt{r_n}} \approx \Theta\left(n^{-\nu(\alpha_*,c)}\right) \text{ as } n \to \infty, \text{ with } \nu(\alpha_*,c) \equiv c\left[\alpha_* - \frac{1}{2}\right] + \frac{1}{2}
$$

• Corollary $k = 1, 2, ..., 6$: ensure CLT or AVCI under constraint

$$
c < c_k(\alpha_*)
$$

$$
\blacktriangleright c_k(\alpha_*) \in (0,1], \text{ sometimes } c_k(\alpha_*)=1.
$$

▶ Optimal RMSE: take $c < c_k(\alpha_*)$ with $c \approx c_k(\alpha_*)$

$$
\boxed{\mathsf{RMSE}\left[\widehat{\mu}_{m_n,r_n}^{\mathsf{RQ}}\right] \approx \Theta\left(n^{-\nu_k(\alpha_*)}\right)}
$$
 as $n \to \infty$, with $\nu_k(\alpha_*, c) \equiv c_k(\alpha_*)\left[\alpha_* - \frac{1}{2}\right] + \frac{1}{2} > \frac{1}{2}$

RQMC better than MC.

.

Corollaries Ensuring CLT or AVCI **Corollary**

Suppose that Assumptions 1 and 2 hold, and \exists $\ket{b'>0}$ and $k_1 \in (0,\infty)$ such that

$$
\frac{\mathbb{E}\left[|X_{n,1}-\mu|^{2+b'}\right]}{\sigma_{m}^{2+b'}} \leq k_1 \quad \forall \ m_n \ \ \text{sufficiently large.} \tag{1}
$$

Then CLT holds for allocation $(m_n, r_n) = (n^c, n^{1-c})$ with any

$$
c < 1 \equiv c_3(\alpha_*),
$$

and optimal **RMSE** $\approx \Theta(n^{-\nu_3(\alpha_*)})$ $\approx \Theta(n^{-\nu_3(\alpha_*)})$ $\approx \Theta(n^{-\nu_3(\alpha_*)})$ as $n \to \infty$ with

 $v_3(\alpha_*) \equiv \alpha_*$ $v_3(\alpha_*) \equiv \alpha_*$ $v_3(\alpha_*) \equiv \alpha_*$.

If [\(1\)](#page-22-2) h[o](#page-20-0)ld[s](#page-26-0) for $b' = 2$, the[n](#page-19-0) AVCI holds for $c < c_3(\alpha_*)$ $c < c_3(\alpha_*)$ $c < c_3(\alpha_*)$ $c < c_3(\alpha_*)$ $c < c_3(\alpha_*)$, and RM[SE](#page-21-0) [ra](#page-23-0)[te](#page-21-0) [e](#page-22-0)[x](#page-23-0)pon[e](#page-26-0)n[t](#page-20-0) [i](#page-25-0)s $v_3(\alpha_*)$ $v_3(\alpha_*)$.

 $\mathcal{L} = \mathcal{L} \times \mathcal{L} = \mathcal{L} \times \mathcal{L}$, where $\mathcal{L} = \mathcal{L} \times \mathcal{L}$

Corollaries Ensuring CLT or AVCI: Tradeoffs

Instead of condition (1) , impose alternative conditions on integrand h

- Assumption 3.A: $V_{HK}(h) < \infty$ (BVHK)
- Assumption $3.B: h$ is bounded
- **Assumption 3.C**: $\mathbb{E}[|h(U) \mu|^{2 + b}] < \infty$ for some $b > 0$, where $U \sim \mathcal{U}[0,1]^s.$

Proposition

- Assumption 3.A \implies 3.B \implies 3.C. leading to successively smaller $c_k(\alpha_*)$ for Corollaries k
- Under Assumption 3.x, for $c_k(\alpha_*)$ ensuring CLT and $c_{k'}(\alpha_*)$ ensuring AVCI,

$$
c_k(\alpha_*) \geq c_{k'}(\alpha_*) \quad \text{(often >)}.
$$

- Assumption 1: $(m_n, r_n) = (n^c, n^{1-c})$, $c \in (0, 1)$
- **Corollary** $k: c < c_k(\alpha_*)$
- $\sigma_{m_n} \approx \Theta(m_n^{-\alpha_*}), \alpha_* > 1/2$

- K 로 K K 로 K 도 로 X 9 Q Q

Corollaries CLT or AVCI: Tradeoffs

 \bullet 3.A \implies 3.B \implies 3.C

- ▶ Assumption 3.A: $V_{HK}(h) < \infty$ (BVHK: $\implies \alpha_* \geq 1$)
- ▶ Assumption 3.B: h is bounded.

▶ Assumption 3.C: $\mathbb{E}[|h(U) - \mu|^{2+b}] < \infty$ for some $b > 0$, where $U \sim \mathcal{U}[0,1]^s$.

Comparisons for fixed $\alpha_*>1/2$

► $(m_n, r_n) = (n^c, n^{1-c}), \quad c < c_k(\alpha_*), \text{ opt RMSE } \approx \Theta(n^{-v_k(\alpha_*)}).$

 $2Q$

Conditions Ensuring CLT or AVCI: Tradeoffs

• All $c_k(\alpha_*) \downarrow$ as $\alpha_* \uparrow$

- ▶ Corollary $k: c < c_k(\alpha_*)$ in $(m_n, r_n) = (n^c, n^{1-c})$. ► $\sigma_{m_n} \approx \Theta(m_n^{-\alpha_*})$, $\alpha_* > 1/2$ (≥ 1 BVHK)
- Most $v_k(\alpha_*) \uparrow$ as $\alpha_* \uparrow$
	- ► Optimal RMSE $\approx \Theta(n^{-\nu_k(\alpha_*)})$, $n \to \infty$
	- ▶ Larger α_* usually yields better RQMC performance.

Bootstrap

- Percentile bootstrap
	- ▶ From RQMC values y_1, \ldots, y_R , bootstrap values y_1^*, \ldots, y_R^* sampled indep. (with replacement)
	- ▶ Take $\bar{y}^* = (1/R) \sum_{r=1}^{R} y_r^*$
	- ▶ Repeat this resampling B times independently, getting \bar{y}^{*b} for $b=1,\ldots,B.$
	- ▶ Sorting yields $\bar{y}^{*(1)} \leq \bar{y}^{*(2)} \leq \cdots \leq \bar{y}^{*(B)}.$
	- ▶ Confidence interval endpoints are quantiles

$$
\left(\bar y^{*(\lfloor B\alpha/2\rfloor)},\bar y^{*(\lceil B(1-\alpha)/2\rceil)}\right).
$$

Bootstrap

- Percentile bootstrap
	- ▶ From RQMC values y_1, \ldots, y_R , bootstrap values y_1^*, \ldots, y_R^* sampled indep. (with replacement)
	- ▶ Take $\bar{y}^* = (1/R) \sum_{r=1}^{R} y_r^*$
	- ▶ Repeat this resampling B times independently, getting \bar{y}^{*b} for $b=1,\ldots,B.$
	- ▶ Sorting yields $\bar{y}^{*(1)} \leq \bar{y}^{*(2)} \leq \cdots \leq \bar{y}^{*(B)}.$
	- ▶ Confidence interval endpoints are quantiles

$$
\left(\bar y^{*(\lfloor B\alpha/2\rfloor)},\bar y^{*(\lceil B(1-\alpha)/2\rceil)}\right).
$$

• Bootstrap t

 \triangleright Recommended (for RQMC) without much analysis

- ► Recommended (for RQMC) without much analysis
► Reasoning: distribution of the t statistic $\sqrt{R}(\bar{y} \mu)/S$ well approximated by the sample distribution α a bootstrapped t statistic $\sqrt{R}(\bar{y}^* - \bar{y})/S^*$ (S^{*} is the standard deviation of y_1^*, \ldots, y_R^*).
- ▶ Take B independent bootstrap t values t^{*b} $(b = 1, ..., B)$, sort them, and then let t^*_L and t^*_U be the $\alpha/2$ and $1-\alpha/2$ quantiles of the t^{*b} values.
- ► With *B* large enough, Pr $(t^*_{L} \leq \sqrt{R} \frac{\bar{y}^* \bar{y}}{S^*} \leq t^*_{U}) \approx 1 \alpha$.
- ► Then if we reason that $Pr(t^*_{t} \leq \sqrt{R}(\bar{y} \mu)/S \leq t^*_{U}) \approx 1 \alpha$, we take

$$
\left(n\bar{y}-St_U^*R^{-1/2}, \bar{y}-St_L^*R^{-1/2}\right).
$$

Bootstrap t properties (Hall 88)

- Highly accurate for estimating the mean, asymptotically and for small sample sizes
- Coverage error $\mathcal{O}(1/R)$
- With γ skewness and κ kurtosis, coverage error

Normal theory: $\left. \frac{1-\alpha/2}{2}\right) \right[\left. \quad 0.14\kappa-2.12\gamma^{2}-3.35\right] +\mathcal{O}(1/R^{2}),$ Percentile: $(1/R)\varphi(z^{1-\alpha/2})[-0.72\kappa-0.37\gamma^2-3.35]+\mathcal{O}(1/R^2),$ Bootstrap t : $\hspace{6cm} 1^{-\alpha/2})[-2.84\kappa + 4.25\gamma^2 \hspace{1cm}] + \mathcal{O}(1/R^2).$

- The bootstrap t has an advantage in missing the -3.35 component that the others have.
- It has a large positive coefficient for γ^2 (extra coverage for skewed data) where the others have negative coefficients.
- The asymptotics predict that the bootstrap t will undercover when κ is large and $\gamma = 0$.
- For R different values y_r , one can show that $\mathsf{Pr}(S^*=0) = R^{1-R}$, not negligible for $R=5$ as we consider.

K □ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q (◇

Selected functions and set of experiments

- Five types of RQMC point sets Lat-RS, Lat-RSB, Sob-DS, Sob-LMS, Sob-NUS
- Each with $n = 2^k$ points for $k = 6, 8, 10, 12, 14$, and in $d = 4, 8, 16, 32$ dimensions.
- Selected functions:
	- SumUeU (smooth, additive): $f(\textbf{\textit{u}}) = -d + \sum_{j=1}^{d} u_j \exp(u_j).$
	- 2 MC2 (smooth): $f(\textbf{\textit{u}}) = -1 + (d-1/2)^d \prod_{j=1}^d (x_j-1/2)$.
	- ³ PieceLinGauss (piecewise linear and continuous and Gaussian inputs): \setminus

$$
f(\mathbf{u}) = \max\left(d^{-1/2}\sum_{j=1}^d \Phi^{-1}(u_j) - \tau, 0\right) - \varphi(\tau) + \tau \Phi(-\tau).
$$

- ⁴ IndSumNormal (discontinuous, infinite variation): $f(\textbf{\textit{u}}) = -\Phi(1) + \mathbb{I}\{d^{-1/2}\sum_{j=1}^d \Phi^{-1}(u_j) \geq 1\},$
- **5** SmoothGaus (smooth and bounded and monotone): $f(\mathbf{u}) = -\Phi(1)$ √ $(\overline{2}) + \Phi(1 + d^{-1/2} \sum_{j=1}^d \Phi^{-1}(u_j)).$
- RidgeJohnsonSU (heavy-tailed): $f(\bm{u}) = -\eta + F^{-1}(d^{-1/2}\sum_{j=1}^s u_j)$ where F is the CDF of the Johnson's SU distribution with skewness -5.66 and kurtosis 96.8 (for any d) making it heavy tailed.
- Bootstrap with $B = 1000$.

Results

- **•** Experiments
	- ▶ 2400 tasks: 6 integrands, 5 RQMC methods, 4 dimensions, 5 RQMC sample sizes and 4 values of the replication size R (5, 10, 20, 30).
	- \blacktriangleright From each time 10³ replicated confidence intervals at 95%, we judged any method that attained less than 92.7% coverage to have failed.
- **a** Results
	- \blacktriangleright The percentile method failed 1698 (70.75%) of those tasks
		- \star Not well suited to very small sample sizes
		- \star Not well regarded for setting confidence intervals for the mean.
	- \blacktriangleright The bootstrap t method failed 81 times
		- [⋆] 74 for Sob-LMS on SumUeU (44 times) or MC2 (30 times); spiky histograms, see next slide
		- **★** Interval of infinite length if $S^* = 0$: 21 times for IndSumNormal with $R = 5$. Discrete distribution, fewer than 2^k different values.
	- \triangleright The plain Student t confidence interval method failed only 3 times.
		- \star Fails only when $R = 5$ (bootstrap t has coverage higher than 95% then)
		- \star Coverage higher than 97% 81 times (SumUeU and MC2)...
		- ***** ... kurtosis of the RQMC points diverges to infinity as n increas[es.](#page-29-0) [\(P](#page-28-0)[a](#page-29-0)[n](#page-32-0)[&](#page-28-0) [O](#page-32-0)[w](#page-33-0)[en](#page-0-0) [202](#page-33-0)3)

Histograms (mostly unusual ones)

- RidgeJohnsonSU: negatively skewed (other RQMC methods \bullet too)
- SumUeU (and MC2): "spike plus outliers"

- PieceLinGauss: bimodal (often for LAT+baker)
- IndSumNormal: Gaussian plus a spike near one value \bullet

- **•** SmoothGauss: roughly Gaussian, as most of those in the data set
- MC2 Sob-NUS: untypical for NUS (more frequent for LMS).

 $\mathbf{A} \times \mathbf{A}$

(□) (n)

Coverage experiments (versus skewness and kurtosis, $R = 10$)

Coverage and length: standard t intervals and $R = 10$

- **•** Some examples high kurtosis, none with extreme skewness
- Standard CI known to have robust coverage \bullet in response to kurtosis but vulnerable to skewness.
- **•** Kurtosis brings above nominal coverage for the standard t intervals
- **•** interval length decreasing with extreme kurtosis (Sob-LMS with SumUeU and MC2)
- \bullet Small R : rare outliers, confidence intervals are extremely short and cover the true mean often enough.

Absolute Skewness

Absolute Skewness

 $2Q$

Conclusions

- CLT for RQMC provided (but only sufficient conditions on the respective growth of RQMC points and number of randomizations)
- On comparison with bootstrap: Plain normal theory two-sided confidence intervals for RQMC performed best overall.
- **Surprising as the bootstrap t method had much better coverage in the literature.**
- \bullet Standard normal theory intervals known to underperform bootstrap t for one-sided intervals Standard normal theory intervals known to underperiorm bootstrap t for one-sided intervals
($O(1/\sqrt{n})$) vs $O(1/n)$). Symmetry ubiquitous property of RQMC estimates, advantage disappears.

Thank you!

- M.K. Nakayama, B. Tuffin. Sufficient Conditions for Central Limit Theorems and Confidence Intervals for Randomized Quasi-Monte Carlo Methods. ACM Transactions on Modeling and Computer Simulation,Volume 34 Issue 3, 2024.
- P. L'Ecuyer, M. K Nakayama, A. B Owen, B. Tuffin. Confidence Intervals for Randomized Quasi-Monte Carlo Estimators. Proceedings of the 2023 Winter Simulation Conference, San Antonio, USA, December 2023. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $2Q$