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Review: Monte Carlo (MC)
MC: random sampling to estimate µ = E[ h(U) ] with U ∼ U [0, 1]s

µ̂MC
n =

1

n

n∑
i=1

h(Ui )

U1,U2, . . . ,Un i.i.d. U [0, 1]s
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Review: MC — Error Estimation Easy, But Slow Convergence
MC estimator: µ̂MC

n = 1
n

∑n
i=1 h(Ui )

CLT: If ψ2 ≡ Var[ h(U) ] ∈ (0,∞), then [Billingsley 1995]√
n

ψ2

[
µ̂MC
n − µ

]
⇒ N (0, 1) as n → ∞

Approximate 100γ% confidence interval (CI) for µ:

IMC
n,γ ≡

[
µ̂MC
n ± zγ

ψ̂n√
n

]

▶ ψ̂2
n = 1

n−1

∑
i=1

[
h(Ui )− µ̂MC

n

]2
and Φ(zγ) = 1− (1− γ)/2.

Asymptotically valid CI (AVCI):

P(µ ∈ IMC
n,γ ) → γ, as n → ∞

Root mean-squared error: RMSE
[
µ̂MC
n

]
= ψ√

n
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Review: Quasi-Monte Carlo (QMC)
QMC: deterministic points to estimate µ = E[ h(U) ]

µ̂Qn = 1
n

∑n
i=1h(ξi )

Low-discrepancy sequence Ξ = (ξi : i = 1, 2, . . .)
▶ Ξ is deterministic and evenly fill [0, 1]s

▶ lattices (e.g., Korobov, . . . ), Digital nets/sequences (e.g., Sobel’, Faure, . . . )
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Example: 16 points of a Digital Net in base 2, in dimension s = 2
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Review: QMC — Fast Convergence, But Error Estimation Difficult
QMC: deterministic points to estimate µ = E[ h(U) ]

µ̂Qn = 1
n

∑n
i=1h(ξi ), Ξ = (ξi : i = 1, 2, . . .)

Koksma-Hlawka (K-H) inequality [Niederreiter 1992]: for each n > 1,

| µ̂Qn − µ | ≤ VHK(h)D
∗
n(Ξ)

▶ Hardy-Krause variation VHK(h) ∈ [0,∞]: “roughness” of h
▶ Star-discrepancy D∗

n (Ξ) ∈ [0, 1]: how unevenly first n points of Ξ fill [0, 1]s

D∗
n (Ξ) = O

(
n−1(ln n)s

)
≈ O

(
n−1

)
, n → ∞.

▶ If VHK(h) <∞ (BVHK), then K-H bound shrinks at faster rate than MC rate Θ(n−1/2)

| µ̂Q
n − µ | ≈ O

(
n−1

)
.

⋆ BVHK: “bounded variation in sense of Hardy and Krause”

▶ But K-H bound not practical
⋆ Difficult to compute, often VHK(h) = ∞, often very loose, . . .
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Review: Randomized Quasi-Monte Carlo (RQMC)

i.i.d. randomizations of Ξ = (ξi : i ≥ 1), each yielding Ξ′ = (U ′
i : i ≥ 1)

▶ Each U ′
i ∼ U [0, 1]s

▶ Ξ′ retains low-discrepancy properties of Ξ

Lattice: random shift [Cranley & Patterson 1976]

Digital net: nested scrambling [Owen 1995], digital shift [L’Ecuyer & Lemieux 2002], . . .
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Review: Randomized Quasi-Monte Carlo (RQMC)
RQMC computation budget of n evaluations of h (as for MC)

▶ allocation (mn, rn) with mn × rn ≈ n
▶ rn = # i.i.d. randomizations
▶ mn = # points used from jth randomized sequence Ξ′

j = (U ′
i,j : i ≥ 1), j = 1, 2, . . . , rn

RQMC: rn ≥ 2 i.i.d. randomizations to estimate µ = E[ h(U) ]

µ̂RQmn,rn =
1

rn

rn∑
j=1

Xn,j , where Xn,j =
1

mn

mn∑
i=1

h(U ′
i ,j)

▶ Xn,1,Xn,2, . . . ,Xn,rn i.i.d.: estimate σ2
mn

≡ Var[Xn,1] typically o(m−1
n ) (even O(m−2

n (lnmn)
2s)

if BVHK) by

σ̂2
mn,rn =

1

rn − 1

rn∑
j=1

(
Xn,j − µ̂RQ

mn,rn

)2
.

Approx γ-level CI for µ

IRQmn,rn,γ ≡
[
µ̂RQmn,rn ± zγ

σ̂mn,rn√
rn

]
▶ Xn,1,Xn,2, . . . ,Xn,rn i.i.d., but distn of each Xn,j depends on n: Triangular array.
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How to choose RQMC Allocation (mn, rn) with mn × rn ≈ n ?

Heuristic: For given budget n, choose rn small and mn ≈ n/rn large to exploit QMC.

▶ CI: IRQmn,rn,γ ≡
[
µ̂RQ
mn,rn ± zγ

σ̂mn,rn√
rn

]
▶ rn = # i.i.d. randomizations
▶ mn = # points used from each randomized sequence

But heuristic lacks rigorous justification.

AVCI relies on CLT: not established for many RQMC settings.
▶ Nested scrambling of digital nets: CLT as mn = n → ∞, fixed rn = 1 [Loh 2003]
▶ Randomly shifted lattices: no CLT as mn = n/rn → ∞, fixed rn ≥ 1 [L’Ecuyer, Munger,

T. 2010]

Goal: Sufficient conditions to ensure CLT and AVCI (as n → ∞).

Assumption 1. “Simple allocation”: (mn, rn) = (nc , n1−c) for constant c ∈ (0, 1).

▶ Main Issue: How to choose c?
▶ More general allocation (mn, rn): rn → ∞ with mn × rn ≈ n as n → ∞.

Assumption 2. σ2mn
≡ Var[Xn,1] > 0 for all n large enough.
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RQMC CLT

Theorem

If Assumptions 1 and 2 hold, then RQMC estimator µ̂RQ
mn,rn satisfies CLT√

rn
σ2
mn

[
µ̂RQ
mn,rn − µ

]
⇒ N (0, 1), as n → ∞

under either

Lindeberg condition:
E
[
(Xn,1 − µ)2 ; |Xn,1 − µ| > t

√
rn σ2

mn

]
E
[
(Xn,1 − µ)2

] → 0, as n → ∞, ∀t > 0;

or

Lyapounov condition:
E
[
|Xn,1 − µ|2+b′ ]
r
b′/2
n σ2+b′

mn

→ 0, as n → ∞, for some b′ > 0.

σ2
mn

= E[ (Xn,1 − µ)2 ] = variance of estimator Xn,1 from single randomization of mn points.
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RQMC Asymptotically Valid CI (AVCI)
Recall Lyapounov condition:

E
[
|Xn,1 − µ|2+b′ ]
r
b′/2
n σ2+b′

mn

→ 0, as n → ∞, for some b′ > 0.

σ̂2
mn,rn =

1
rn−1

∑rn
j=1

(
Xn,j − µ̂RQ

mn,rn

)2
is unbiased estimator of σ2

mn
= Var[Xn,1].

Approx. γ-level CI for µ

IRQmn,rn,γ =

[
µ̂RQ
mn,rn ± zγ

σ̂mn,rn√
rn

]
Theorem

If Assumptions 1 and 2 hold, along with Lyapounov condition for b′ = 2, then CLT√
rn

σ̂2
mn,rn

[
µ̂RQ
mn,rn − µ

]
⇒ N (0, 1), as n → ∞

and AVCI
P(µ ∈ IRQmn,rn,γ) → γ, as n → ∞.
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Corollaries Ensuring CLT or AVCI
For estimator Xn,1 from single randomization of mn points,

σmn ≡
√

Var[Xn,1 ] ≈ Θ(m−α∗
n ) as mn → ∞, where α∗ ≡ − lim

mn→∞

ln(σmn)

ln(mn)
>

1

2

▶ α∗ ≥ 1 when VHK(h) <∞ (BVHK).

Under Assumption 1 [ (mn, rn) = (nc , n1−c), c ∈ (0, 1) ],

RMSE
[
µ̂RQ
mn,rn

]
=

σmn√
rn

≈ Θ
(
n−v(α∗,c)

)
as n → ∞, with v(α∗, c) ≡ c

[
α∗ − 1

2

]
+ 1

2 .

Corollary k = 1, 2, . . . , 6: ensure CLT or AVCI under constraint

c < ck(α∗)

▶ ck(α∗) ∈ (0, 1], sometimes ck(α∗) = 1.
▶ Optimal RMSE: take c < ck(α∗) with c ≈ ck(α∗)

RMSE
[
µ̂RQ
mn,rn

]
≈ Θ

(
n−vk (α∗)

)
as n → ∞, with vk(α∗, c) ≡ ck(α∗)

[
α∗ − 1

2

]
+ 1

2 > 1
2

=⇒ RQMC better than MC.
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Corollaries Ensuring CLT or AVCI
Corollary

Suppose that Assumptions 1 and 2 hold, and ∃ b′ > 0 and k1 ∈ (0,∞) such that

E
[
|Xn,1−µ|2+b′

]
σ2+b′
mn

≤ k1 ∀ mn sufficiently large. (1)

Then CLT holds for allocation (mn, rn) = (nc , n1−c) with any

c < 1 ≡ c3(α∗),

and optimal RMSE ≈ Θ(n−v3(α∗)) as n → ∞ with

v3(α∗) ≡ α∗.

If (1) holds for b′ = 2, then AVCI holds for c < c3(α∗), and RMSE rate exponent is v3(α∗).

CLT/AVCI with rn → ∞ since c < 1.
RMSE rate same as σmn ≈ Θ(m−α∗

n ) for single randomization of mn = n points.
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Corollaries Ensuring CLT or AVCI: Tradeoffs
Instead of condition (1), impose alternative conditions on integrand h

Assumption 3.A: VHK(h) <∞ (BVHK)

Assumption 3.B: h is bounded

Assumption 3.C: E[ |h(U)− µ|2+b ] <∞ for some b > 0, where U ∼ U [0, 1]s .

Proposition

Assumption 3.A =⇒ 3.B =⇒ 3.C,
leading to successively smaller ck(α∗) for Corollaries k

Under Assumption 3.x, for ck(α∗) ensuring CLT and ck ′(α∗) ensuring AVCI,

ck(α∗) ≥ ck ′(α∗) (often >).

Assumption 1: (mn, rn) = (nc , n1−c), c ∈ (0, 1)

Corollary k: c < ck(α∗)

σmn ≈ Θ(m−α∗
n ), α∗ > 1/2
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Corollaries CLT or AVCI: Tradeoffs

Cor. k Ensures Assumption on h c upper bd ck(α∗) RMSE rate exp vk(α∗)

2 CLT 3.A (BVHK) 1
2α∗−1 > 1 >

3 CLT 3.B (h bdd) 1
2α∗+1 > 2α∗

2α∗+1 >

4 CLT 3.C (b > 0) 1
2α∗(1+

2
b
)+1

∈
(
0, 12

) 2α∗(1+
1
b
)

2α∗(1+
2
b
)+1

> 1
2

5 AVCI 3.A (BVHK) 1
4α∗−3 > 3α∗−2

4α∗−3 >

6 AVCI 3.C (b = 2) 1
4α∗+1 ∈

(
0, 13

)
3α∗

4α∗+1 > 1
2

3.A =⇒ 3.B =⇒ 3.C
▶ Assumption 3.A: VHK(h) < ∞ (BVHK: =⇒ α∗ ≥ 1)
▶ Assumption 3.B: h is bounded.
▶ Assumption 3.C: E[ |h(U)− µ|2+b ] < ∞ for some b > 0, where U ∼ U [0, 1]s .

Comparisons for fixed α∗ > 1/2
▶ (mn, rn) = (nc , n1−c), c < ck(α∗), opt RMSE ≈ Θ(n−vk (α∗)).
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Conditions Ensuring CLT or AVCI: Tradeoffs
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0.75

1

α∗

c
u
p
p
er

b
ou

n
d
c k
(α

∗)

c∗ = 1

c2(α∗)

c3(α∗)
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c4(α∗, 14)

c5(α∗)
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(α

∗)

v∗ = 1

v2(α∗)

v3(α∗)

v4(α∗, 4)

v4(α∗, 14)

v5(α∗)

v6(α∗)

vMC = 1/2

All ck(α∗) ↓ as α∗ ↑
▶ Corollary k: c < ck(α∗) in (mn, rn) = (nc , n1−c).
▶ σmn ≈ Θ(m−α∗

n ), α∗ > 1/2 (≥ 1 BVHK)

Most vk(α∗) ↑ as α∗ ↑
▶ Optimal RMSE ≈ Θ(n−vk (α∗)), n → ∞
▶ Larger α∗ usually yields better RQMC performance.
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Bootstrap
Percentile bootstrap

▶ From RQMC values y1, . . . , yR , bootstrap values y∗
1 , . . . , y

∗
R sampled indep. (with replacement)

▶ Take ȳ∗ = (1/R)
∑R

r=1 y
∗
r

▶ Repeat this resampling B times independently, getting ȳ∗b for b = 1, . . . ,B.
▶ Sorting yields ȳ∗(1) ≤ ȳ∗(2) ≤ · · · ≤ ȳ∗(B).
▶ Confidence interval endpoints are quantiles(

ȳ∗(⌊Bα/2⌋), ȳ∗(⌈B(1−α)/2⌉)
)
.

Bootstrap t
▶ Recommended (for RQMC) without much analysis (Owen 2023)
▶ Reasoning: distribution of the t statistic

√
R(ȳ − µ)/S well approximated by the sample distribution

of a bootstrapped t statistic
√
R(ȳ∗ − ȳ)/S∗ (S∗ is the standard deviation of y∗

1 , . . . , y
∗
R ).

▶ Take B independent bootstrap t values t∗b (b = 1, . . . ,B), sort them, and then let t∗L and t∗U be the
α/2 and 1− α/2 quantiles of the t∗b values.

▶ With B large enough, Pr
(
t∗L ≤

√
R ȳ∗−ȳ

S∗ ≤ t∗U

)
≈ 1− α.

▶ Then if we reason that Pr
(
t∗L ≤

√
R(ȳ − µ)/S ≤ t∗U

)
≈ 1− α, we take(

nȳ − St∗UR
−1/2, ȳ − St∗LR

−1/2
)
.
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Bootstrap t properties (Hall 88)

Highly accurate for estimating the mean, asymptotically and for small sample sizes

Coverage error O(1/R)

With γ skewness and κ kurtosis, coverage error

Normal theory: (1/R)φ(z1−α/2)
[

0.14κ− 2.12γ2 − 3.35
]
+O(1/R2),

Percentile: (1/R)φ(z1−α/2)
[
−0.72κ− 0.37γ2 − 3.35

]
+O(1/R2),

Bootstrap t: (1/R)φ(z1−α/2)
[
−2.84κ+ 4.25γ2 ]

+O(1/R2).

The bootstrap t has an advantage in missing the −3.35 component that the others have.

It has a large positive coefficient for γ2 (extra coverage for skewed data) where the others
have negative coefficients.

The asymptotics predict that the bootstrap t will undercover when κ is large and γ = 0.

For R different values yr , one can show that Pr(S∗ = 0) = R1−R , not negligible for R = 5
as we consider.
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Selected functions and set of experiments

Five types of RQMC point sets Lat-RS, Lat-RSB, Sob-DS, Sob-LMS, Sob-NUS

Each with n = 2k points for k = 6, 8, 10, 12, 14, and in d = 4, 8, 16, 32 dimensions.

Selected functions:
1 SumUeU (smooth, additive): f (uuu) = −d +

∑d
j=1 uj exp(uj).

2 MC2 (smooth): f (uuu) = −1 + (d − 1/2)d
∏d

j=1(xj − 1/2).
3 PieceLinGauss (piecewise linear and continuous and Gaussian inputs):

f (uuu) = max
(
d−1/2

∑d
j=1 Φ

−1(uj)− τ, 0
)
− φ(τ) + τΦ(−τ).

4 IndSumNormal (discontinuous, infinite variation):

f (uuu) = −Φ(1) + I{d−1/2
∑d

j=1 Φ
−1(uj) ≥ 1},

5 SmoothGaus ( smooth and bounded and monotone):

f (uuu) = −Φ(1/
√
2) + Φ(1 + d−1/2

∑d
j=1 Φ

−1(uj)).

6 RidgeJohnsonSU (heavy-tailed): f (uuu) = −η + F−1(d−1/2
∑s

j=1 uj) where F is the CDF of
the Johnson’s SU distribution with skewness −5.66 and kurtosis 96.8 (for any d) making it
heavy tailed.

Bootstrap with B = 1000.
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Results
Experiments

▶ 2400 tasks: 6 integrands, 5 RQMC methods, 4 dimensions, 5 RQMC sample sizes and 4
values of the replication size R (5, 10, 20, 30).

▶ From each time 103 replicated confidence intervals at 95%, we judged any method that
attained less than 92.7% coverage to have failed.

Results
▶ The percentile method failed 1698 (70.75%) of those tasks

⋆ Not well suited to very small sample sizes
⋆ Not well regarded for setting confidence intervals for the mean.

▶ The bootstrap t method failed 81 times
⋆ 74 for Sob-LMS on SumUeU (44 times) or MC2 (30 times); spiky histograms, see next slide
⋆ Interval of infinite length if S∗ = 0: 21 times for IndSumNormal with R = 5. Discrete

distribution, fewer than 2k different values.

▶ The plain Student t confidence interval method failed only 3 times.
⋆ Fails only when R = 5 (bootstrap t has coverage higher than 95% then)
⋆ Coverage higher than 97% 81 times (SumUeU and MC2)...
⋆ ... kurtosis of the RQMC points diverges to infinity as n increases. (Pan & Owen 2023)
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Histograms (mostly unusual ones)
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RidgeJohnsonSU: negatively skewed (other RQMC methods
too)

SumUeU (and MC2): “spike plus outliers”

PieceLinGauss: bimodal (often for LAT+baker)

IndSumNormal: Gaussian plus a spike near one value

SmoothGauss: roughly Gaussian, as most of those in the data
set

MC2 Sob-NUS: untypical for NUS (more frequent for LMS).
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Coverage experiments (versus skewness and kurtosis, R = 10)
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Coverage and length: standard t intervals and R = 10

Some examples high kurtosis, none with
extreme skewness

Standard CI known to have robust coverage
in response to kurtosis but vulnerable to
skewness.

Kurtosis brings above nominal coverage for
the standard t intervals

interval length decreasing with extreme
kurtosis (Sob-LMS with SumUeU and MC2)

Small R: rare outliers, confidence intervals
are extremely short and cover the true mean
often enough.
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Conclusions
CLT for RQMC provided (but only sufficient conditions on the respective growth of RQMC points
and number of randomizations)

On comparison with bootstrap: Plain normal theory two-sided confidence intervals for RQMC
performed best overall.

Surprising as the bootstrap t method had much better coverage in the literature.

Standard normal theory intervals known to underperform bootstrap t for one-sided intervals
(O(1/

√
n) vs O(1/n)). Symmetry ubiquitous property of RQMC estimates, advantage disappears.

Thank you!
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