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Graph Sparsification
 Weighted graph G(V,E,c). NB: |E| is often O(n^2), with n = |V|.
 Here ce = cost of edge e, sampled from distribution F.
 Sparsification of G : prune E so that pruned graph Gs keeps the 

same structural properties. 
 Benefits: visualization, reduced computational and storage cost.
 Extends ce to unweighted graphs by taking inverse of Jaccard 

index for edge e = (u,v):

 Threshold Sparsification
 Keep edge e in Gs iff ce < cth for some threshold cth.
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Graph Sparsification
 Spectral Sparsification [Spielman, Srivtsava, 2011]

 Keep edge e with probability se ~ Re/ce where Re = effective 
resistance of edge e (proportional to the probability that edge e
appears in a random spanning tree of G), and reweight ce

 For se large enough, Gs = Gss maintains spectral properties. 
(Laplacians                    )

 Metric Sparsification: Metric Backbone Gs = Gmb

 Keep edge e iff it is metric (appears in some shortest path between 2 
vertices in V).

 No hyperparameter.
 Same Idea behind betweeness Community Detection 

[GirvanNewman2004]: edges traversed by the highest number of 
shortest paths separate communities.
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Metric Backbone
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 Metric Sparsification: Metric 
Backbone Gs = Gmb

 Keep edge e iff it is metric 
(appears in some shortest path 
between 2 vertices in V).

 Maintains shortest path 
distances, betweenness 
centrality, pagerank, connected 
components.
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 Metric Sparsification: Metric 
Backbone Gs = Gmb

 Keep edge e iff it is metric 
(appears in some shortest path 
between 2 vertices in V).
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Metric Backbone
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 Metric Sparsification: Metric 
Backbone Gs = Gmb

 Keep edge e iff it is metric 
(appears in some shortest path 
between 2 vertices in V).

 Maintains shortest path 
distances, betweenness 
centrality, pagerank, connected 
components.

 Community structure?
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How Sparse is Gmb ? 
HOW SPARSE IS THE APSP?

Graph |V | |E | preprocessing % edges deleted

Facebook 190M 49.9B Custom 26.5%
Twitter 40M 1.5B Jaccard 39%
Tuenti 12M 685M Jaccard 59%
LiveJournal 4.8M 34M Jaccard 40%

NotreDame 0.3M 1.5M Jaccard 45%
Adamic 29%

DBLP 318K 1M Jaccard 23%
Adamic 9%

Twitter-ego 1.7M 1M Jaccard 57%
Adamic 39%

Movielens 1.6K 1.9M Jaccard 88%
Facebook 1K 143K #messages 78%
US-airports 30.5K 6K #passengers 72%
C-Elegans 0.3K 2.3K #connections 17%

Table. From [1]. The average % of edges in the APSP is 50%.

[1] Kalavri, Simas, Logothetis (2016). The shortest path is not always a straight line: leveraging

semi-metricity in graph analysis. Proceedings of the VLDB Endowment, 9(9), 672-683.
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From Kalavri, Simas, Logothetis (2016). The shortest path is not always a straight line: leveraging 
semi-metricity in graph analysis. Proceedings of the VLDB Endowment, 9(9), 672-683. 
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Metric Backbone vs Threshold Graph

 Primary school dataset, threshold set to keep same % of edges
 Empirical Evidence that Metric Backbone preserves Community 

Structure.
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Graph Sparsification and Clustering
 Effect of sparsification on performance of clustering algorithms

 Extends observations in Brattig Correia, R., Barrat, A., Rocha, L. 
M. (2023). Contact networks have small metric backbones that 
maintain community structure and are primary transmission 
subgraphs. PLoS Computational Biology, 19(2), e1010854.

NUMERICAL EXPERIMENTS

(a) Bayesian MCMC (b) Leiden (c) Spectral Clustering

Figure. Effect of sparsification on the performance of clustering algorithms on various data sets.

This extends the observations of [2] to more data sets and more algorithms.

[2] Brattig Correia, R., Barrat, A., Rocha, L. M. (2023). Contact networks have small metric backbones

that maintain community structure and are primary transmission subgraphs. PLoS Computational
Biology, 19(2), e1010854.
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Weighted Stochastic Block Model

 n nodes in k latent blocks.
 zu = block membership of node u (i.i.d)
 pab = Prob(edge between a node in block a and a node in block b)
 c(u.v) = cost of edge (u,v), sampled from cdf Fab.  
 and 
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Assumptions
q Asymptotic scaling: with

 .
 For all fixed.

q Costs sampled from fixed cdf
 Continuous
 For all .

q Some notations: 
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Cost of shortest paths on wSBM
q Cost C(u,v) of shortest path between any pair of nodes u,v chosen

uniformly at random in their blocks is whp

q Proof for Fab ~ expo(lab)
 First Passage Percolation (FPP) from u until their kth-nearest neighbors

 Let Cu(k) be the cost to kth-nearest 
neighbor of u

 Conditioned on edges exposed from the 
previous k neighbors from u,

Cu(k+1) - Cu(k) ~ iid expo.
 Can compute that whp

k

u
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Cost of shortest paths on wSBM
q Two FPPs from u and v
q Case 1:

 FPPs from u and v have an empty intersection whp


u v
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Cost of shortest paths on wSBM
q Case 2:

 FPPs from u and v have a non-empty intersection whp
 There is some
 .

u vw
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Cost of shortest paths on wSBM
q Cost C(u,v) of shortest path between any pair of nodes u,v chosen

uniformly at random in their blocks is whp

q Proof for Fab continuous such that 

 Argument from [Janson, 1999]. One, two and three times log n/n for 
paths in a complete graph with random weights.

 G = (V,E,c) ~ wSBM(n,p,π,(Fab)ab) 
→ Gunif = (V,E,cunif) ~ wSBM(n,p,π,(unif(0,1/λab))ab) 
→ Gexp = (V,E,cexp) ~ wSBM(n,p,π,(expo(λab))ab) 

 Show that the shortest paths in Gexp, Gunif and G are the same.
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Cost of shortest paths on wSBM
q Cost C(u,v) of shortest path between any pair of nodes u,v chosen

uniformly at random in their blocks is whp

q Corollary: probability of keeping edge in Metric Backbone of wSBM.
 Remember 
 Let 
 Then for any pair of nodes u,v chosen uniformly at random in blocks 

a and b, whp
.

q Proof: adapt [Corollary 1, vanMieghemW, 2009]
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Example: Planted Partition Model
q For any pair of nodes u, v chosen uniformly at random in blocks a, b, whp

q Let with and
 For all , and

 Then and

 In particular,
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Spectral Clustering on the Metric Backbone
q Algorithm

 Input: Graph G, number of clusters k.
 Output: Predicted community memberships 
 W = weighted adjacency matrix of G, with eigendecomposition

 = (1+e)-approximate solution of k-means performed on rows of U
q Loss for G = Gmb, with Sym(k) = set of all permutations of [k]:

q If and µ = minimal eigenvalue of is non zero, then 
whp
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Graph Construction
q Construct proximity graph G = ([n],E,p) from n data points x1,…,xn ∈ Rd. 

 similarity function sim(xu,xv)
 N(u,q) = {q items the most similar to u);
 proximity associated with edge(u,v) = (suv + svu)/2 where

suv = sim(xu,xv) if v ∈ N(u,q) and 0 otherwise. 
q Common choice: Gaussian kernel similarity sim(xu,xv) ~ exp(−∥xu−xv∥2)

GRAPH CONSTRUCTION

Graph construction : construct a proximity graph G = ([n],E , p) from data points x1, · · · , xn 2 Rd .
I a similarity function sim : Rd ⇥ Rd ! R+ that quantifies the resemblance between two data points;
I N (u, q): set of q-nearest neighbors from xu (the q items the most similar to u);
I the proximity puv associated with the edge (u, v) is (suv + svu)/2, where

suv =

(
sim(xu, xv ) if v 2 N (u, q),
0 otherwise.

Common choice: Gaussian kernel similarity sim(xu, xv ) = exp
⇣
�kxu�xvk2

d2
K (xu)

⌘
, where dK (xi) is the

Euclidean distance between xu and its q-NN.

(a) MNIST (b) Fashion MNIST (c) HAR

Figure. Performance of spectral clustering on subsets of MNIST, FashionMNIST datasets (n = 10, 000), and on the
HAR dataset (n = 10, 299). The ARI is averaged over 10 trials; error bars show the standard error of the mean.
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Conclusion
 Communities are well-preserved by the metric backbone.
 Theoretical confirmation on wSBMs using FPP techniques 

[KolossvaryK, 2015].
 Shortest paths of wSBMs are longer than shortest paths in real 

networks (hop-count Θ(log n) in wSBMs Θ(1) in real networks). 
 Extension to unweighted networks. 


