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Problem formulation

® \/ nodes, with finite but large capacity C V, C > 0.

® M ~ sN, particles moving between the nodes.

External particles, more numerous, at each node.

® External particles leave the node after service.

® External particles compete with the M particles.

Q: interaction between both?
Aim: Long-time behavior of the system when it gets large (N — +00).
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Motivation: free-floating car sharing

® No physical stations

® Cars parked everywhere inside the service area

Free-floating service area of Communauto in Montreal Communauto vehicles' arrivals from the dataset 2021

® In mesh of 1km? CN ~ 200 parking spaces
® N ~ 150 zones

M ~ 2000 free-floating cars = particles moving between the nodes

® private cars = external particles
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Probabilistic modeling of a car sharing system

® Free-floating has always been analyzed as a station-based system (Weikl, Bogenberg'2015)

® Once the service area is divided into small zones, from 0.25km? to 1 km? (Lippold et
al.’2018), a fixed capacity is considered for each zone

® |n this work: residual capacity = capacity seen by free-floating cars, it is random.
(Fricker, Mohamed, Rigonat. 2024. Stochastic averaging and mean-field for a large system
with fast varying environment with applications to free-floating car-sharing. (hal-04714886))
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The model
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Dynamics 1: private cars

® Private cars are an open system. They outnumber free-floating cars
® They arrive in a station: Poisson Process of rate alN.

® |f there is at least a free place they park there,
otherwise they leave the system.

® The parking time of each private car is exponentially distributed with mean 1/8.

® Without ff-cars, they behave in every station as an M/M/CN/CN queue with arrival rate
aN and service rate 8

aN
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The Markov process

For a given zone i, and a given instant t, denote by
® mM(t): number of free places
® VN(t): number of available free-floating cars
® RM(t): number of reserved free-floating cars

® XN(t): number of private cars

Mass conservation
ml () + VN(1) + RN (1) + XN(1) = CN

= the vector (m/(t), V/V(t), RV(t)) represents the state of station i.
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Dynamics 2: free-floating cars

® The model is homogeneous
® service area divided into N zones
® total capacity of each zone is CN

® M ~ Ns is the total number of free-floating cars in the system

m 4 Ry »
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Closed network of pseudo-stations with spots occupied by free-floating cars. Capacity of the pseudo-stations is random and
determined by spots left free by private cars.
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Transition rates

Process ((mM(t), VN(t), RN(t)), 1 <i < N) is a multi-scale Markov process on the state space

N
SN = {(m,-, Vi, rf)leSN S N3N, mj; + vi+r; < CN, Z(Vk +re) < M}
k=1

with transitions which modify just the state of one station. For station i/,

(m,-+1,v,-,r,-) B(CN—m,-—v,-—r,-)
(m,- — ].7 Vi, r;) OLN]lmI.>0

(mi,viy ) = S (mi = 1Lvi+1,1) p(sy— 5 P (vi+ 1) lm>o
(mj,vi—1,ri+1) Aly,>o0
(m;+1,v;,r;—1) vr;.
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Stochastic averaging

1. Process (mM(t)) evolves quickly
® its speed is O(N)
® its dynamics ignore the presence of free-floating cars (V/¥(t))

® it shows a phase transition

2. Process (V/V(t), RN(t)) evolves slowly
® its speed is O(1)

® Stochastic averaging: it sees the fast process (m/'(t)) at equilibrium

Related works:

® V. Fromion, P. Robert, J. Zaherddine, Stochastic Models of Regulation of Transcription in
Biological Cells, Journal of Mathematical Biology 87(5) (2023);

® C. Bordenave, D. McDonald, A. Proutiere, A particle system in interaction with a rapidly
varying environment: Mean field limits and applications, ACM Sigmetrics, 2008
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Results
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Phase transition

For large values of N, if m;, v; and r; are o(N), (mM(t)) behaves like a birth and death process

(Lm;) with jumps:
Lm;, —1, aN
Lm, —
‘ L +1, BCN

geometric(BC/a) if a > BC

There are two regimes in the limit for N — oo .
+00 if a < BC.

® Overloaded regime: /8 > C

® the number of free places is limited

ﬁbﬁﬂﬂﬂﬂﬁﬂﬁﬁﬁ o || G

c
ﬁ— = acceptance probability < 1
@

® Underloaded regime: a/8 < C
® there is always a free parking place

) || = = | e =

12/24



Mean-field analysis
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Result at the normal timescale: t +— ¢

Mean-field limit

Assume a > BC. In the limit N — oo any pseudo-station has the distribution of the tandem of
two queues:

The first is a M/M/1 queue with
® arrival rate (8C/a)u(s — E(V(t)) — E(R(t)))
® service rate A

The second is a M/M /oo queue with service rate v

C
ﬁ— = acceptance probability < 1
«a

R
V v
B (s~ E(V+R)
~ N e
A

Dynamics of available and reserved ff cars as a tandem of two queues. The horizontal is a M /M /1 queue, the vertical queue is
M /M /oo queue. 14 /24




A nice time-scale: t — tN

If f is a function on N3 the occupation measure in [0, t] is
t
(un, g Z/ N(Nu), VN (Nu), RN(Nu))du—/ AN(F)(Nu)du,
0

where AN(f)(t) = 1/N Z,N:1 f(mN(t), VN(t), RN(t)) is the empirical measure.

Stationary mean-field limit

The sequence (fot /\N(f)(Nu)du> is tight and, for any converging subsequence iy, ,

Jlim. (/Ot AN(f)(Nku)du) - (/ot /Na w7, P, &, dr)du)

for any f with finite support on N3. Where
wu(dm, dv, dr) = geom(8C/a) ® geom(p) ® Poi(pA/v)

Ats+l—/(Ats+1)2—4sA with A = )‘(% s (1 N Be >)

2A BC

and p =

Proof: ® T. Kurtz Lemma (see T. Kurtz Averaging for martingale problems and stochastic
approximation, Applied Stochastic Analysis, pp. 186-209. Springer (1992))

® good scaling for the evolution equations
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Performance evaluation
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Goal: solving the unbalance problem

® not finding a car
Problems:

&

MILLERAY_
SANT-MICHEL—
PARC-EXTENSION

® not finding a parking space )

Aim: reduce the number of zones without parking spaces or cars
Tools: incentive policies

Recall:

Limiting proportion of zones without available parking spaces is determined by the environment:
1—BC/a overloaded regime

0 underloaded regime
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Incentive policies

Transitions rate for station i are

m,-+1, V,') B(CN—m,——v,-)

m; —1,v;) aN1m>o0

mi—1vi+1) p(My—YN, Vl)ﬂm;>025#
|=

(

(mj, v, ri) = (
( 18(v)
(mi+1,v;—1) Aly>o.
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Driving free-floating cars

The marginal distribution 7/ has the following expression. For k € N+t

_ 1 BC s — fyv mv(dv))
my (k) = my(0) (Aang(Nv)wv(dv)) gl(k—1).
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Example: a random weighted routing policy

We consider the routing rule

r—1
k)=1 ,
gr(k) =1+ k+1
with )
l::rl ~ discouragement to join a pseudo-station with k cars parked,
and

r ~ level of the discouragement.

Proposition

Fix r € N*. The equilibrium distribution of the number of FF cars in a zone is Negative Binomial.
For k € N,

_ r _k (k +r— 1)'
mrp(k) =(1—p)'p m
where p € (0, 1] is the solution of the fixed point equation
1—p)*T +p(1—As—Ar)=1— As.

Remark: when r = 1, no incentives, Geometric(p) with explicit. p
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Performance evaluation 1

® r =1, uniform routing, 71 , = Geometric(p)
® 1< r < oo, wr,, = Negative Binomial(r, p)

® r— 400, Ty o) — Poisson() in distribution, where v = lim;—o0 rp(r)

Equilibrium Marginal Distribution of V'

0.1

r,p(K)

51072

—— r =1, geometric(0.90)
r = 2, NBinomial(0.82)
r = 3, NBinomial(0.76)
—— r =50, Poisson(7,98)

Marginal invariant distribution of the number of available free-floating cars in a zone: it becomes more centered around the mean

for increasing values of the parameter r measuring the strengthness of the incentive policy.




Performance evaluation 2

Recall: M ~ sN, s = fleet size

® limiting proportion of zones without available parking spaces:
1 — BC/a +— determined by the environment

Theorem (Performance)

The limiting probability of failure coincides with the stationary probability of absence of
free-floating cars in any station which is given, for a fixed r € Nt, by

7r,p(0) = (1 = p)",
where p € (0, 1] is the solution of the fixed point equation
(1—p) T +p(1—As—Ar)=1— As,
with

A HBC
a\
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Performance evaluation 3

Given a threshold, say ¢, for the probability of failure, one can compute the minimum fleet size s.
that assures

7r,p(0) < e
This is given by

1— 1—¢el/r
so(r) = € €

A tr elt/r -

Minimum fleet size s. that guarantees a failure probability < e
100

Minimum value of the fleet size that assures that the failure probability 7, ,(0) < &, for three different values of the threshold &.
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® Heterogeneity: we showed that the heterogeneous model for a fixed valued of N has product
form invariant distribution. How to pass to the limit for N — oo in the multi-scale case?
(talk of C. Fricker)

® other routing policies

® more realistic routing policies power-of-d, fixed neighborhoods
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Thank you for your attention
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