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Introduction

• Our objective is to model a special case of queuing, where
resource allocation is instantaneous, as is processing time,
in order to optimize the cost of resource allocation.

• Discrete time queue, (St)N represent the evolution over
time of the number of customers in the queue, (at)N the
number of customers served at time t , and (ct)N the
number of customers arriving at time t which are assumed
i .i .d .



Introduction

This gives us the following model, ∀t ∈ N∗:

St+1 = (St + ct − at)
+.
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Markovian Decision Processes: a short
introduction

• Using a Markovian Decision Processes (MDP) for our
model.

• MDP are Markov chain with actions that influence the law
of the chain.

• S the state space of the chain, A the space of possible
actions.

• Being in a state s performing action a gives a cost c(s,a)
and change the state according to the law P(.|s,a).



Markovian Decision Processes: a short
introduction

• Find a decision rule, i.e. a sequence of functions dt
depending on the chain’s trajectory up to time t, which
minimize a cumulative cost.

• For a fixed γ ∈]0,1[, we want to minimize :

v(s) := E
[ +∞∑

t=0

γtc(St ,dt(St))|S0 = s
]

Q(s,a) := E
[ +∞∑

t=0

γtc(St ,dt(St))|S0 = s,d0(s) = a
]
.



Markovian Decision Processes: a short
introduction

Markovian Decision Processes theory (see [Put94]) establishes
the following theorem:

Theorem
There exists an application π∗ from S in A, such that one of the
minimizer (d∗

t )N is of the form:

∀t ∈ N dt = π∗.

This result greatly simplifies the search for an optimal decision
rule, as this optimum is ultimately reached by a stationary,
Markovian and non-random rule.



Model

In our case, the state space of the chain is described by N, the
action space by a set of the form [[0,amax ]], with
amax ∈ N ∪ {+∞}, and the transition matrix P is fully described
by the relation established previously:

St+1 = (St + ct − at)
+.

All that remains is to define the cost function. The idea is to
translate this into a queue size L not to be exceeded, and a
linear cost µ for the actions:

∀(s,a) ∈ S × A, r(s,a) = (s − L)+ + µ ∗ a.

Many of our results can be generalized to reward functions of
the form :

∀(s,a) ∈ S × A, r(s,a) = f (s) + g(a)

for any non decreasing f and g with f convex and g linear.



Shape of optimal policy

Non decreasing is optimal

We have the following property on the optimal policy π∗:

∀s, π∗(s + 1) ≥ π∗(s).

Although this result is intuitive, it is not easy to show.

Property

We have the following property one the optimal policy π∗:

∀s, π∗(s + 1) ∈
{
π∗(s) + 1,0,amax

}
.



Reducing the space Θ

We also want to avoid policies that allocate resources too late,
otherwise we end up stuck in penalizing states. We also to
avoid policies that allocate too much resources in 0.

Proposition

For s ≥ L, and under the condition that γ < µ we have :

Q(s,1) > Q(s,0),

and in 0, we have the existence of ã such that:

∀a < ã, Q(0,a) > Q(0, ã).

The previous results, tells us that π∗ is in space Θ where:

Θ =
{
πθ, θ ∈ [[−ã,L[[ |∀s ∈ S, πθ(s) = min(amax , (s − θ)+)

}
.



Some Results



Some Results

In the settings of amax = ∞, the queue can be stabilize, even
with excessive arrivals, and Θ can be simplified to:

Θ =
{
πθ, θ ∈ [[−ã,L[[ |∀s ∈ S, πθ(s) = (s − θ)+

}
.

We can compute the value of this politics by using the bellman
equation, which leads to following property:

Value Computation

We have ∀πθ ∈ Θ:

vπθ
(L) = f (L) + g(L − θ) +

γ

1 − γ
E(hθ(Z ))

where hθ(Z ) = f ((θ + z)+) + g((θ + z)+ − θ).



Some Results

Proposition

Given n i.i.d. samples Z1, ...,Zn from pZ , define the estimator
for vπθ(T ) for θ ∈ L := [[−ã,L[[

v̂πθ(L) = f (L) + g(L − θ) +
γ

1 − γ

1
n

n∑
i=1

hL(Zi)

the estimator for v⋆(L)

v̂⋆(L) = max
θ∈L

v̂πθ(L)

and the corresponding estimate for π⋆

π̂⋆ = πθ̂ where θ̂ ∈ argmax
θ∈L

v̂πθ(L)



Estimation Error

The procedure above yields a consistant estimate and its
asymptotic error rate is upper bounded as

lim sup
n→∞

√
nE (|v̂⋆(u)− v⋆(u)|) ≤

√
S2 ln(2|L|)

where σ2
L is the variance of γ

1−γhL(Z ), and S2 = maxL∈L σ2
L is

the largest variance.



Simulations

• Simulate a 5G base station servicing a set of users.
• User demand depends on a number of factors, including

distance from the base station, antenna etc...
• Use our model to reduce allocation costs



Simulations
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Figure: Value of the policy.



Simulations
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Figure: Optimal policy for different cost parameters µ..



Simulations
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Figure: Impact of µ on the average delay



Conclusion

• Model our resource allocation problem as a reinforcement
learning problem.

• One of the optimal policies is constant to 0 then increasing
linearly.

• If we further assume that there is no limit to the number of
resources we can allocate, these linearly increasing
policies have a value that we can compute analytically.

• Estimating the value empirically with the analytical formula
is not difficult and converges faster than trying to estimate
the value function by the discounted sum.

• Computing an optimal policy can be done by minimizing a
convex function.
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Thank you!

Thank you for your attention!
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