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Federated Learning (Google&Apple)

» Train ML models keeping data local
= transfer costs and privacy concerns...
= but also energy

» Bias-variance tradeoff

» Learn a different model for each cluster
of similar clients
= similarity needs to be learned in
parallel

McMahan et al, Communication-Efficient Learning
of Deep Networks from Decentralized Data, 2017
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different distribution

» Each agent a wants to
estimate Its true mean p,



Collaborative Mean Estimation (Asadi et al, 2023)

» Each agent receives one
sample per slot drawn
from a (potentially)
different distribution

» Each agent a wants to
estimate Its true mean p,

Asadi, Bellet, Maillard, Tommasi,
Collaborative Algorithms for
Online Personalized Mean
Estimation, TMLR, 2023 4
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the set of potentially
similar agents C.t
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If distributions are sub-gaussians w. parameter ¢°
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Putting all together
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Summary

Per-agent Convergence time
space/time
complexity sub-Gaussian bounded 4-th moment
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What if communication over a graph?

1

»Maximum degree r
»Each agent can

communicate in parallel
with its neighbors
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What if communication over a graph?

Expected tradeoft:

» A sparser graph may be
learned faster

»But connected components
may be smaller reducing
collaboration speedup
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Learning the right collaborators
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How to estimate over the graph

Two algorithms:

1. B-ColME, based on message
passing as a belief algorithm

2. C-ColME, based on consensus
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»Each agent estimates the
empirical average over a h-hop
neighborhood using estimates
over (h-1)-hop neighborhoods
of its direct neighbors
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»Each agent estimates the
empirical average over a h-hop
neighborhood using estimates
over (h-1)-hop neighborhoods
of its direct neighbors

»Problem with loops

= restrain over a distance d
s.t. the d-hop
neighborhood is a tree

»Each stores and sends tables
with d entries
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»Nodes in the same connected
component will not compute
estimates over the same d-hop

H neighborhood CC_d

»Convergence of the estimator
s evident
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Summary

Per-agent Convergence time

space/time

complexity sub-Gaussian bounded 4-th moment
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C-ColME

»Standard average consensus
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C-ColME

»Standard average consensus
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C-ColME

Convergence to true mean:

» W, stochastic & symmegcric
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C-ColME

Convergence to true mean:
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Choice of the graph and other parameters

Desiderata

> Large components CC, and CC.A

> rsmall
» uniform load over the clients

» the largest d which guarantees the local tree
structure
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Choice of the graph and other parameters

Desiderata

> Large components CC, and CC.A G0(|A|,r): class ofsimple

> rsmall
» uniform load over the clients random regular graphs

» the largest d which guarantees the local tree
structure

Theorem (informal)

For d ~ log(|A|), r ~ log(1/8) almost each agent has
|CCA| > |A]Ve
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Some numerical results
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A FL training
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Open questions

»Results for C-ColME under sub-gaussian distributions
»Rewire connections rather than pruning
»What if all agents have different distributions?

»How to extend this approach to more realistic FL
problems?
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Looking forward to discuss




