

Scalable Decentralized Algorithms for Online Personalized Mean Estimation

Franco Galante, <u>Giovanni Neglia</u>, Emilio Leonardi

Atélier en Évaluation des Performances, Toulouse, 2-4/12/2024

- > Train ML models keeping data local
 - transfer costs and privacy concerns...
 - but also energy

- > Train ML models keeping data local
 - transfer costs and privacy concerns...
 - but also energy

- > Train ML models keeping data local
 - transfer costs and privacy concerns...
 - but also energy

- > Train ML models keeping data local
 - transfer costs and privacy concerns...
 - but also energy
- Bias-variance tradeoff

- > Train ML models keeping data local
 - transfer costs and privacy concerns...
 - but also energy
- Bias-variance tradeoff

- > Train ML models keeping data local
 - transfer costs and privacy concerns...
 - but also energy
- Bias-variance tradeoff
- Learn a different model for each cluster of similar clients

- > Train ML models keeping data local
 - transfer costs and privacy concerns...
 - but also energy
- Bias-variance tradeoff
- Learn a different model for each cluster of similar clients
 - similarity needs to be learned in parallel

Toy Model

$$\mu_{2}$$

$$x_{1}^{1}, x_{2}^{2}, \cdots, x_{2}^{t}$$

$$x_{1}^{1}, x_{1}^{2}, \cdots, x_{1}^{t}$$

$$\bar{x}_{1}^{t} = \frac{1}{t} \sum_{\tau=1}^{t} x_{1}^{\tau}$$

$$\mu_{3}$$

 $^{\mu}$

- 4
- μ
- Each agent receives one sample per slot drawn from a (potentially) different distribution
- \triangleright Each agent a wants to estimate its true mean μ_a
- 5
- μ

$$\mu$$

- Each agent receives one sample per slot drawn from a (potentially) different distribution
- \triangleright Each agent a wants to estimate its true mean μ_a

Asadi, Bellet, Maillard, Tommasi, Collaborative Algorithms for Online Personalized Mean Estimation, TMLR, 2023 4

Same μ ? YES w. confidence 1- γ

$$\bar{x}_1^t = \frac{1}{t} \sum_{\tau=1}^t x_1^\tau \overset{\mu}{=} \underbrace{1}_{\tau=1} \underbrace{x_1^{t-1}}_{\tau=1} \underbrace{\mu}_{\tau=1} \underbrace{1}_{\tau=1} \underbrace{x_1^t}_{\tau=1} \underbrace{\mu}_{\tau=1} \underbrace{1}_{\tau=1} \underbrace{\mu}_{\tau=1} \underbrace{\mu}_{\tau=1$$

Same μ ? YES w. confidence 1- γ

$$\bar{x}_1^t = \frac{1}{t} \sum_{\tau=1}^t x_1^\tau \overset{\boldsymbol{\mu}}{=} \underline{1} \underbrace{\sum_{\tau=1}^t x_1^\tau}^{\underline{t}} \overset{\bar{x}_{1,4}^t = \bar{x}_4^{t-1}}{\underline{x}_4^t} \underline{\boldsymbol{\mu}} \underbrace{\bar{x}_1^t = \bar{x}_4^{t-1}}_{\underline{x}_4^t}$$

$$[\bar{x}_1^t - \beta_{\gamma}(t), \bar{x}_1^t + \beta_{\gamma}(t)]$$

Same μ ? YES w. confidence 1- γ

$$\bar{x}_1^t = \frac{1}{t} \sum_{t=1}^t x_1^{\tau} \overset{\mu}{\text{1}} \underbrace{1} \overset{\bar{x}_{1,4}^t = \bar{x}_4^{t-1}}_{\text{2}} \underbrace{\mu}_{\text{1}} \underbrace{1} \overset{\mu}{\text{2}} \underbrace{1}_{\text{2}} \underbrace{1}_$$

$$\mathbb{P}(\exists t : |\bar{x}_1^t - \mu_1| > \beta_{\gamma}(t)) \le \gamma$$

small prob. to ever observe a false negative

Same μ ? YES w. confidence 1- γ

$$\bar{x}_1^t = \frac{1}{t} \sum_{1}^t x_1^{\tau} \overset{\mu}{\text{1}} \underbrace{1} \overset{\bar{x}_{1,4}^t = \bar{x}_4^{t-1}}{\text{4}} \overset{\mu}{\text{1}}$$

$$\begin{array}{c|c}
\bar{x}_1^t & \bar{x}_4^{t-1} \\
\hline
\bar{x}_1^t - \beta_{\gamma}(t), \bar{x}_1^t + \beta_{\gamma}(t)]
\end{array}$$

$$\mathbb{P}(\exists t : |\bar{x}_1^t - \mu_1| > \beta_{\gamma}(t)) \le \gamma$$

small prob. to ever observe a false negative

When we conclude that 2 distributions are different, there is no need to reconsider the decision

Each agent re-evaluates the set of potentially similar agents C_a^{t}

Each agent re-evaluates the set of potentially similar agents $C_a^{\ t}$

If distributions are sub-gaussians w. parameter σ^2

$$> \beta_{\gamma}(n) := \sigma \sqrt{\frac{2}{n}} \left(1 + \frac{1}{n} \right) \ln(\sqrt{(n+1)}/\gamma)$$

If distributions are sub-gaussians w. parameter σ^2

$$> \beta_{\gamma}(n) := \sigma \sqrt{\frac{2}{n}} \left(1 + \frac{1}{n} \right) \ln(\sqrt{(n+1)}/\gamma)$$

 $\mathbb{P}(a \text{ keeps wrong collaborators after } \zeta_a) \leq \frac{\sigma}{2}$

$$\zeta_a \approx n_{\frac{\delta}{2|\mathcal{A}|}}^{\star}(\Delta \mu_a) + |\mathcal{A}|$$

$$n_{\gamma}^{\star}(\Delta) := \beta_{\gamma}^{-1}(\Delta) \quad \underset{\text{distinguish difference } \Delta}{\min \text{minimum \#samples to}}$$

If the right collaborators C_a have been identified...

$$\mathbb{P}(\exists t > \zeta_a' : |\hat{\mu}_a^t - \mu_a| > \varepsilon) \le \frac{\delta}{2}$$

$$\zeta_a' \approx \frac{n_{\delta/2}^{\star}(\epsilon)}{|\mathcal{C}_a|} + \frac{|\mathcal{C}_a|}{2}$$

If the right collaborators C_a have been identified...

$$\mathbb{P}(\exists t > \zeta_a' : |\hat{\mu}_a^t - \mu_a| > \varepsilon) \le \frac{\delta}{2}$$

$$\zeta_a' \approx \frac{n_{\delta/2}^{\star}(\epsilon)}{|\mathcal{C}_a|} + \frac{|\mathcal{C}_a|}{2}$$

Summary

	Per-agent	Convergence time	
	space/time complexity	sub-Gaussian	bounded 4-th moment
ColME	$ \mathcal{A} $	$\frac{1}{\Delta\mu_a^2}\log\frac{ \mathcal{A} }{\Delta\mu_a\delta} + \frac{ \mathcal{A} }{r} + \frac{1}{ \mathcal{C}_a }\frac{1}{\varepsilon^2}\log\frac{1}{\delta\varepsilon^2}$	$\frac{1}{\Delta\mu_a^4} \frac{ \mathcal{A} }{\delta} + \frac{ \mathcal{A} }{r} + \frac{1}{ \mathcal{C}_a } \frac{1}{\delta\varepsilon^4}$

What if communication over a graph?

- > Maximum degree r
- Each agent can communicate in parallel with its neighbors

What if communication over a graph?

Expected tradeoff:

- > A sparser graph may be learned faster
- But connected components may be smaller reducing collaboration speedup

Learning the right collaborators

$$\mathbb{P}(a \text{ keeps wrong collaborators after } \zeta_a) \leq \frac{\delta}{2}$$

$$\zeta_a \approx n^*_{\frac{\delta}{2|\mathcal{A}|}} (\Delta \mu_a) + \frac{|\mathcal{A}|}{r}$$

$$\mathbb{P}(\text{any wrong collaboration after } \zeta_D) \leq \frac{\sigma}{2}$$

$$\zeta_D \approx n_{\frac{\delta}{2|\mathcal{C}_a|r}}^{\star}(\Delta \mu_a)$$

How to estimate over the graph

Two algorithms:

- 1. B-ColME, based on message passing as a belief algorithm
- 2. C-ColME, based on consensus

B-ColME

Each agent estimates the empirical average over a h-hop neighborhood using estimates over (h-1)-hop neighborhoods of its direct neighbors

Each agent estimates the empirical average over a h-hop neighborhood using estimates over (h-1)-hop neighborhoods of its direct neighbors

- Each agent estimates the empirical average over a h-hop neighborhood using estimates over (h-1)-hop neighborhoods of its direct neighbors
- Problem with loops
 - ⇒ restrain over a distance d s.t. the d-hop neighborhood is a tree

- Each agent estimates the empirical average over a h-hop neighborhood using estimates over (h-1)-hop neighborhoods of its direct neighbors
- Problem with loops
 - ⇒ restrain over a distance d s.t. the d-hop neighborhood is a tree

- Each agent estimates the empirical average over a h-hop neighborhood using estimates over (h-1)-hop neighborhoods of its direct neighbors
- Problem with loops
 - ⇒ restrain over a distance d s.t. the d-hop neighborhood is a tree
- Each stores and sends tables with d entries

B-ColME

- Nodes in the same connected component will not compute estimates over the same d-hop neighborhood CC_a^d
- Convergence of the estimator is evident

Summary

	Per-agent space/time	Convergence time	
	complexity	sub-Gaussian	bounded 4-th moment
ColME	$ \mathcal{A} $	$\frac{1}{\Delta\mu_a^2}\log\frac{ \mathcal{A} }{\Delta\mu_a\delta} + \frac{ \mathcal{A} }{r} + \frac{1}{ \mathcal{C}_a }\frac{1}{\varepsilon^2}\log\frac{1}{\delta\varepsilon^2}$	$\frac{1}{\Delta\mu_a^4} \frac{ \mathcal{A} }{\delta} + \frac{ \mathcal{A} }{r} + \frac{1}{ \mathcal{C}_a } \frac{1}{\delta\varepsilon^4}$
B-ColME	rd	$\frac{1}{\Delta\mu_a^2}\log\frac{ \mathcal{CC}_a r}{\Delta\mu_a\delta} + d + \frac{1}{ \mathcal{CC}_a^d }\frac{1}{\varepsilon^2}\log\frac{1}{\delta\varepsilon^2}$	$\frac{1}{\Delta\mu_a^4} \frac{ \mathcal{CC}_a r}{\delta} + d + \frac{1}{ \mathcal{CC}_a^d } \frac{1}{\delta\varepsilon^4}$

>Standard average consensus

$$\hat{\mu}_{a}^{1} = x_{a}$$

$$\hat{\mu}_{a}^{t} = \sum_{a' \in \mathcal{C}_{a}^{t} \cup \{a\}} (W_{t})_{a,a'} \hat{\mu}_{a'}^{t-1}$$

>Standard average consensus

$$\hat{\mu}_{a}^{1} = x_{a}$$

$$\hat{\mu}_{a}^{t} = \sum_{a' \in \mathcal{C}_{a}^{t} \cup \{a\}} (W_{t})_{a,a'} \hat{\mu}_{a'}^{t-1}$$

> Here need to track a moving average over a dynamic graph

$$\hat{\mu}_{a}^{t} = (1 - \alpha_{t})\bar{x}_{a}^{t} + \alpha_{t} \sum_{a' \in \mathcal{C}_{a}^{t} \cup \{a\}} (W_{t})_{a,a'} \hat{\mu}_{a'}^{t-1}$$

Convergence to true mean:

➤ W_t stochastic & symmetric

Convergence to true mean:

- ➤ W_t stochastic & symmetric
- $ightharpoonup \alpha_t = lpha ext{ or } \alpha_t = rac{\iota}{t+1}$

Summary

	Per-agent	Convergence time	
	space/time complexity	sub-Gaussian	bounded 4-th moment
ColME	$ \mathcal{A} $	$\frac{1}{\Delta\mu_a^2}\log\frac{ \mathcal{A} }{\Delta\mu_a\delta} + \frac{ \mathcal{A} }{r} + \frac{1}{ \mathcal{C}_a }\frac{1}{\varepsilon^2}\log\frac{1}{\delta\varepsilon^2}$	$\frac{1}{\Delta\mu_a^4} \frac{ \mathcal{A} }{\delta} + \frac{ \mathcal{A} }{r} + \frac{1}{ \mathcal{C}_a } \frac{1}{\delta\varepsilon^4}$
B-ColME	rd	$\frac{1}{\Delta\mu_a^2}\log\frac{ \mathcal{CC}_a r}{\Delta\mu_a\delta} + d + \frac{1}{ \mathcal{CC}_a^d }\frac{1}{\varepsilon^2}\log\frac{1}{\delta\varepsilon^2}$	$\left \frac{1}{\Delta \mu_a^4} \frac{ \mathcal{CC}_a r}{\delta} + d + \frac{1}{ \mathcal{CC}_a^d } \frac{1}{\delta \varepsilon^4} \right $
C-ColME	r		$\frac{1}{\Delta\mu_a^4} \frac{ \mathcal{CC}_a r}{\delta} + \frac{1}{ \mathcal{CC}_a } \frac{1}{\delta\varepsilon^4}$

Choice of the graph and other parameters

Desiderata

- Large components CC_a and CC_a^d
- > r small
- uniform load over the clients
- > the largest d which guarantees the local tree structure

Choice of the graph and other parameters

Desiderata

- Large components CC_a and CC_a^d
- > r small
- uniform load over the clients
- the largest d which guarantees the local tree structure

 $G_0(|A|,r)$: class of simple random regular graphs

Choice of the graph and other parameters

Desiderata

- Large components CC_a and CC_a^d
- > r small
- uniform load over the clients
- the largest d which guarantees the local tree structure

 $G_0(|A|,r)$: class of simple random regular graphs

Theorem (informal)

For d ~ $\log(|A|)$, r ~ $\log(1/\delta)$ almost each agent has $|CC_a^d| > |A|^{1/2}$

Some numerical results

 $|A| = 10^4$, r = 10, d = 5, $\epsilon = 0.1$, $\delta = 0.1$

fraction of agents with wrong estimates

fraction of wrong links used

A FL training

Open questions

- > Results for C-ColME under sub-gaussian distributions
- > Rewire connections rather than pruning
- > What if all agents have different distributions?
- How to extend this approach to more realistic FL problems?

Looking forward to discuss

