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(General) Dynamic matching model

Fix a simple connected graph G = (V ,E ),
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• Items of the various classes in V arrive one by one; their class (r.v.
A) is drawn following µ on V .

• Any incoming item is matched, if possible and profitable, with a
compatible item present in the system.
Otherwise it is stored in a buffer;

• If several possible matches are possible, the incoming item follows a
given matching policy ϕ.



(General) Dynamic matching model

Usual types of greedy matching policies:

• ’Priority’ type;

• ’Class-uniform’: visit the compatible classes in a uniform random
order, and pick an item of the first non-empty one.

• ’Match the Longest’ (ml), ’Match the Shortest’ (ms),...

• Max-weight-type (mw, including ml): if an j-item enters the
system, then it chooses a i-item for her match, where j is drawn
uniformly from the set

Argmaxi∈E(j) : x(i)>0

(
x(i) + ri,j

)
,

for a fixed set of rewards ri,j on the edges of G .

• fcfm, lcfm, etc.



(General) Dynamic matching model

Bipartite dynamic matching

• The compatibility graph is bipartite: G = (V1 ∪ V2,E ).

• Arrivals occur pairwise, by arrivals of the type (v1, v2) ∈ V1 × V2.

• Same matching rules as above.



Applications

• Healthcare systems: Organ transplants systems, Blood banks...
(bipartite graphs);

• Healthcare systems: Kidney cross-transplants (general graphs).

• Matching interfaces: Job search, Public Housing allocations
(bipartite graphs);

• On-line dating (general graphs);

• Collaborative economy: Peer-to-peer sharing platforms,
BlaBlaCar, Uberdrive, Bike-sharing...(general graphs);

• Assemble-to-order systems (general graphs and hypergraphs).

• ...
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Stability problem

The stability region Stab(G , ϕ), is the set of probability measures µ on
V rendering the system stable.

Natural necessary condition on µ
Stab(G , ϕ) is included in the set

NCond(G ) :=

{
µ : µ(I ) < µ(E (I )) for all independent sets I

}
.



Maximality

Maximality of the stability region

• G is said stabilizable if

Stab(G , ϕ) ̸= ∅ for some ϕ.

• ϕ is said maximal on a stabilizable graph G if

Stab(G , ϕ) = Ncond(G ).

• G is said maximal if it is stabilizable, and any ϕ is maximal on G .



Dependence on the matching policy:
example of the ’Paw graph’
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B (whole triangle) is maximal whereas A (light grey zone) is not: if
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Main stability results

Theorems

For any connected graph G ,

(i) [G is stabilizable] ⇐⇒ [G is non bipartite];

(ii) [G non bipartite] ⇐⇒ [Any mw-type policy (and thus, ml) is
maximal on G ];

(iii) [G non bipartite] ⇐⇒ [fcfm is maximal on G ]
(and the stationary distribution has a product form).
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Optimization problem

• Suppose now that there is a cost, or a reward associated to the
model:

1 Matching rewards: The various matches are associated to a given
reward, e.g. a {i , j}-matching yields the reward ri,j .

2 Holding costs: The waiting times of items in line are associated to
given costs: e.g. one time unit for a i-item costs ci .

3 Loss costs: Items have due dates. The reneging of e.g. items of
class i costs di .

• We aim at constructing an optimal matching policy to solve
Optimization problem 2.

• For this we allow non-greedy policies.



Related literature: Optimization of
matching models

• Gurvich, I., and Ward, A. (2014). On the dynamic control of
matching queues. Stochastic Systems, 4(2): 1–45:
Lower bound for the long-run cumulative holding costs.

• Ana Bušić and Sean Meyn. Approximate optimality with bounded
regret in dynamic matching models. ACM Sigmetrics Performance
Evaluation Review, 43(2):75–77, 2015: Approximately optimal policy
with bounded regret, in the heavy-traffic regime (holding costs).

• Nazari, M., and Stolyar, A.L. (2019). Reward maximization in
general dynamic matching systems. Queueing Systems: Theory and
Applications 91(1): 143–170:
Optimality of a greedy primal-dual algorithm for the long-term
average matching rewards.

• Süleyman Kerimov, Itai Ashlagi, and Itai Gurvich. On the optimality
of greedy policies in dynamic matching. Operations Research, 2023:
Hindsight optimality of greedy policies (matching rewards).



Dynamic programming for the bipartite
matching model

Consider the following ‘N-graph’, with two supply classes and two
demands classes:

s1

ℓ1

d1

ℓ2

s2

ℓ3

d2

• Items enter by pairs (one supply - one demand);
• Arrival rates are fixed;
• Threshold-type policies are optimal: do not match any (d1, s2) pair

until there are K such pairs in the buffer.

• A. Cadas, A. Bušić and J. Doncel. Optimal control of dynamic
bipartite matching models. in Proceedings of the 12th EAI
International Conference on Performance Evaluation Methodologies
and Tools: 39–46, 2019.



A general dynamic matching system on
the ‘N’-graph

Consider again the following ‘N-graph’:
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Our contribution
We extend the latter result to the general matching model (single
arrivals)... in which case the situation is a bit more intricate.



Settings (I)

Stationary policies

• Class-detail Markov chain of the system:

N4 − valued sequence (Xn) := ((Xn(0),Xn(1),Xn(2),Xn(3))) ;

• Admissible policy: a sequence of Markovian decision rules
(un)n∈Ns.t. for all n,

Xn+1 = un(Xn) + An+1.

• Stationary policy π: a constant sequence (un)n∈N ≡ (u)n∈N.

Matching on a state x
Le x be a state of the Markov chain.

• Let Mx be the set of matchings m on the buffer represented by x
(↪→ Mx = ∅, if π is greedy).

• Let x−m be the resulting state after executing matching x ∈ Mx.



Settings (II)

Cost function
Linear mapping c of the form

c :

{
N4 −→ R+

x := (x0, x1, x2, x3) 7−→ c0x0 + c1x1 + c2x2 + c3x3
,

for c0, c1, c2, c3 ≥ 0, and s.t. c2 ≤ c0 and c1 ≤ c3.

Discounted cost problem
For a discount factor γ ∈ (0, 1), for any state x,

vπ
γ (x) =

+∞∑
n=0

γnEπ
x [c(Xn)].

We aim at determining the value function, as a mapping of the form

vγ : x 7−→ inf
π∈adm

vπ
γ (x).



Settings (III)

Dynamic programming operator
For any real mapping v on N4 and x ∈ N4, denote

Lγmv(x) = c(x) + γE [v(x−m+ A)] , for all m ∈ Mx;

Lγv(x) = min
m∈Mx

Lγmv(x) = c(x) + γ min
m∈Mx

E [v(x−m+ A)] .

Bellman equation
For any γ, the value function vγ solves the fixed point equation

vγ(x) = Lγvγ(x), for any state x.



Threshold-type policy on the ‘N-graph’

Good-sense threshold policy:

“Do not match any ℓ2 edge until there are too many such pairs in
the buffer.”
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Threshold-type policy on the ‘N-graph’

More precisely:

Match all possible ℓ1 and ℓ3 edges, before matching a certain
amount kti(x)(x) of ℓ2 edges, according to a threshold ti(x) that
depends on the difference between the number of remaining items
0 and 2 in x.
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Main result

Theorem (Jean, M’ 2024+)
Under the ongoing assumptions, there exists an optimal stationary policy
of the threshold type.

About (in-)stability

• Despite instability (⇐ bipartite graph), the series

N∑
n=0

γnEπ
x [c(Xn)]

converges for all π.

• This is not the case for the average cost problem

vπ
γ (x) = lim

N→+∞

1

N

N∑
n=0

Eπ
x [c(Xn)] .

(contrary to the bipartite matching model with pairwise arrivals).
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Main tool for proof

Theorem 6.11.3 (Puterman, 2014)
Suppose that

(i) There exists a mild function w : N4 → R+, such that for all v in

Vw =

{
v : N4 → R+ : sup

x∈N4

v(x)

w(x)
< ∞

}
,

there exists a Markovian decision rule u such that Lγv = Lγu(.)v .

(ii) There exist two sets V and D such that

1 V is stable under Lγ and under pointwise convergence;
2 For v ∈ V there exists a deterministic Markovian decision rule u ∈ D

such that
Lγv = Lγ

u(.)v .

Then, there exists an optimal stationary policy π⋆ structured by a single
Markovian decision rule u⋆ ∈ D .



Natural extension

The above result holds if we replace the ‘N-graph’ by any blow-up of the
‘N-graph’, and the cost function is defined accordingly.
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Ongoing work and open questions

• Determining or approximating the value of the optimal threshold?

• Learning the threshold ?

• ↪→ Done in some cases by (Cadas et al., 2021) for the bipartite
model.



Ongoing work and open questions

Is Greedy an optimal policy for the complete graph?

• True in the bipartite case (obvious);
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• ... not so obvious in the general case.
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Ongoing work and open questions

Optimal threshold policy for the paw graph?
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• L. Jean and P. Moyal. “Dynamic programming for the stochastic
matching model on general graphs: the case of the ‘N-graph’.”
ArXiv preprint math/PR 2402.01803 (2024).
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An access control problem

• We saw that the system is stable if ran e.g. by fcfm or mw, if µ
belongs to the fundamental region

Ncond(G ) = {µ ∈ M (V ) : µ(I ) < µ(E (I )) for all independent sets I} .

• Suppose that the matching policy is fixed, equal to the above. How
do we construct a measure µ able to stabilize the system, i.e. a
measure µ ∈ Ncond(G )?



Weighted measures

Definition
Let G = (V ,E ) be a graph. For any family of weights α on the edges of
G , we define the associated positive measure on nodes µα ∈ M (V ), by

µα(i) :=
∑

j∈E(i)

αi,j , i ∈ V ,

and µ̄α is the associated probability measure. The set of such weighted
probability measures is denoted by W (G ) := {µ̄α : α ∈ M(E )} .



Main result

Theorem
The set W (G ) (and thus, the set of invariant probability measures for
reversible random walks on V ) coincides with

• The set Ncond(G ), if G is not a bipartite graph;

• The set

Ncond2(G ) =

{
µ ∈ M (V ) :

{
∀ I ∈ I(V ) \ {V1,V2}, µ (I ) < µ (E (I ))
µ(V1) = µ(V2)

}
,

if G is a bipartite graph of bipartition V = V1 ∪ V2.



Interest for admission control

• Set a maximal stable policy (fcfm, ml, mw,...).

• To stabilize the system it is sufficient to tune µ so as to belong to
Ncond(G ).

... But checking this is of order O(N3) complexity!

• For this, it is sufficient (and necessary!) to ‘throw’ a family of
weights on the edges of the graph, and then constructing the
corresponding weighted measure µ̄α.
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Example

Then, we have 
µ̄α(1) = a+b

a+2b+2c+2d+2e

µ̄α(2) = b+c+d
a+2b+2c+2d+2e

µ̄α(3) = c+e
a+2b+2c+2d+2e

µ̄α(2) = d+e
a+2b+2c+2d+2e

Then, µ̄α ∈ Ncond(G ), and is invariant for the reversible Markov chain
on {1, 2, 3, 4} having transitions

P(1, 1) = a
a+b ; P(1, 2) =

b
a+b ;

P(2, 1) = b
b+c+d ; P(2, 3) =

c
b+c+d ; P(2, 4) =

d
b+c+d

P(3, 2) = c
c+e ; P(3, 4) =

e
c+e ;

P(4, 2) = d
d+e ; P(4, 3) =

e
d+e .



Sketch of proof: W (G ) ⊂ N (G ) or
N2(G )

• Proved directly by hand;

• Already done in Comte (2021) for simple non-bipartite graphs and
N (G ).



Sketch of proof: W (G ) ⊃ N (G ) or
N2(G )

• A: incidence matrix of the compatibility graph.

• Farkas Lemma: One, and only one of the following linear systems
admits solutions:

1 the system Ax = b, for x indexed by E satisfying x ≥ 0
component-wise ;

2 the system tAy ≥ 0, for y indexed by V and satisfying tby < 0
component-wise.



Sketch of proof: W (G ) ⊃ N2(G )

• Network-flow problem.



Some related results: Access control

• Begeot, J., Marcovici, I. and Moyal, P. (2023) “Stability regions of
systems with compatibilities, and ubiquitous measures on graphs”,
Queueing Systems: Theory and Applications, 103: 275–312.

• C. Comte, F. Mathieu, S. Varma and A. Bušić. Online stochastic
matching: A polytope perspective. arXiv preprint
arXiv:2112.14457v5, 2024.
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State space

Let V ∗ be the free monoid associated to V , and

C =
{
c ∈ V ∗ : ∀(i , j) ∈ E , |c |i |c |j = 0

}
.

Buffer detail
At any arrival time point t,

Ct = c = c1c2...cq ∈ C,

where cj = class of the i-th oldest item in line.

Class detail
At any t,

Xt = [Ct ] := (|c |i )i∈V X ⊂ N|V | ∈



Assumptions

• Continuous-time model;

• FCFM policy: First Come, First Matched;

• For any buffer detail c, the arrival process of class i-items is

• λ(i), if i has a niehgboring class in c,
• γi ([c])λ(i), else, for a set of γi ’s satisfying

γi ([c])γj([c] + ei ) = γi ([c] + ei )γj([c]), [c] ∈ X , i , j ∈ |[1, n]|,

which is equivalent to saying that for some mapping Γ on X ,

γi (c) =
Γ(|c|+ ei )

Γ(|c|) ∈ [0, 1], c ∈ C, i ∈ |[1, n]|.



Examples of balanced access controls

• Decentralized case:

Γ(x) =
n∏

i=1

xi−1∏
ℓ=0

γi (ℓ) with γi : {0, 1, 2, . . .} → (0, 1).

• Power-laws:

Γ(x) =
n∏

i=1

γi
φi (xi ) with 0 < γi < 1 and φi : {0, 1, 2, . . .} → (0,+∞).

• Semi-centralized case:

Γ(x) =
( n∏

i=1

γi
xi
)( n∏

i,j=1
i ̸=j

γi,j
xixj
)
with 0 < γi < 1 and 0 < γi,j < 1.

• ...



Score-aware policy gradient
• We aim at optimizing the long-run average reward

vΓ(θ) = lim
T→∞

EΓ

(
1

T

∫ T

0

R(Ct)dt

)
=
∑
c∈C

∑
a∈A

∑
r∈R

rP(r |c, a)γ([c]|θ)πΓ(c|θ),

where
• R(Ct) ∈ R is the reward at time t;
• A = {enter, not enter} is the set of actions;
• πΓ is the stationary distribution of the CTMC (Ct) under the access

control γ.

• The gradient of the mapping vΓ thus satisfies

∇vΓ(θ) =
∑
c∈C

∑
a∈A

∑
r∈R

rP(r |c, a)γ([c]|θ)π(c|θ)

× (∇logπΓ(c|θ) +∇logγ([c]|θ)) .



Score-aware policy gradient

Procedure:

1 Fix the observation times ti ’s and the step sizes αi ’s;

2 Start from a point in the state space and a base parameter θ0.

3 At each observation time tm:

1 Take an action (enter/not enter) following γ given θm, and observe
the next state;

2 Update
θm+1 = θm + αmF (cm,m),

for F following the ascending direction of the above gradient.



Example: Admission control in a M/M/1
queue

Figure: Bipartite matching model

• Comte, C., Jonckheere, M., Sanders, J., and Senen-Cerda, A.
(2023). “Score-Aware Policy-Gradient Methods and Performance
Guarantees using Local Lyapunov Conditions: Applications to
Product-Form Stochastic Networks and Queueing Systems.”
ArXiv math.PR/2312.02804



Stationary measure: product form

Theorem
Under stability conditions, the stationary measures have the form

π(c) = π(∅)
ℓ∏

p=1

γcp ([c1 · · · cp−1])λ(cp)

λ (V (c1, . . . , cp))
, c = c1c2 . . . cℓ ∈ C \ {∅}.

• Already known for unconstrained arrivals;

• Generalizes to discrete-time models and/or finite buffer system
and/or memoryless reneging;

• Key tool: These are Order-Independent queues.
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Consequence: explicit expression for the
gradient

Corollary
The gradient

∇ log πΓ(c|θ) = ∇ log Γ([c] | θ)− E (∇ log Γ([C ] | θ)) , c ∈ C,

where C is distributed according to the stationary distribution πΓ(·|θ).

Ongoing work and perspectives

• Optimization of the access control for matching rewards?

• ... for holding costs?

• ... for loss costs in the case of reneging?



Consequence: explicit expression for the
gradient

Corollary
The gradient

∇ log πΓ(c|θ) = ∇ log Γ([c] | θ)− E (∇ log Γ([C ] | θ)) , c ∈ C,

where C is distributed according to the stationary distribution πΓ(·|θ).

Ongoing work and perspectives

• Optimization of the access control for matching rewards?

• ... for holding costs?

• ... for loss costs in the case of reneging?



Merci


	Motivations
	Stability for greedy matching policies
	Optimization of general dynamic matching models
	Access control I: tuning the arrival rates
	Access control II: acceptance probability for FCFM models

