COMBINATORIAL OPTIMIZATION WITH GRAPH NEURAL NETWORK: CHAINING TO LEARN THE GRAPH ALIGNMENT PROBLEM

Marc Lelarge INRIA, DI/ENS, PSL Research University

IRIT - Toulouse - December 2024

Can GNN solve combinatorial optimization problems?

Combinatorial Optimization and Reasoning with Graph Neural Networks

Quentin Cappart Department of Computer Engineering and Software Engineering Polytechnique Montréal Montréal, Canada	QUENTIN.CAPPART@POLYMTL.CA
Didier Chételat CERC in Data Science for Real-Time Decision-Making Polytechnique Montréal Montréal, Canada	DIDIER.CHETELAT@POLYMTL.CA
Elias B. Khalil Department of Mechanical & Industrial Engineering University of Toronto Toronto, Canada	KHALIL@MIE.UTORONTO.CA
Andrea Lodi Jacobs Technion-Cornell Institute Cornell Tech and Technion - IIT New York, USA	ANDREA.LODI@CORNELL.EDU
Christopher Morris Department of Computer Science RWTH Aachen University Aachen, Germany	MORRIS [@] CS.RWTH-AACHEN.DE
Petar Veličković DeepMind London, UK	PETARV@DEEPMIND.COM

Cracking nuts with a sledgehammer: when modern graph neural networks do worse than classical greedy algorithms

Maria Chiara Angelini^{1,2} Fe

Federico Ricci-Tersenghi 1,2,3

Cracking nuts with a sledgehammer: when modern graph neural networks do worse than classical greedy algorithms

Maria Chiara Angelini^{1,2} Federico Ricci-Tersenghi^{1,2,3}

Despite careful attempts, Böther et al. (2022) were incapable of reproducing the results, even reporting that using random weights in the GNN yields similar results as the trained weights. Thus, at this moment this approach should be considered at best inconclusive (...)

from Cappart et al. (2023)

Given two $n \times n$ adjacency matrices A and B, the graph alignment problem is to minimize $||A - PBP^{T}||_{F}$ over all permutation matrices P and where $|| \cdot ||_{F}$ is the Frobenius norm :

$$\mathsf{GAP} = \min_{\pi \in \mathcal{S}_n} \sum_{i,j} \left(\mathbf{A}_{ij} - \mathbf{B}_{\pi(i)\pi(j)} \right)^2,$$

where π is the permutation associated to the permutation matrix **P**. We denote by $\pi^{A \to B}$ a solution to the graph alignment problem.

Given two $n \times n$ adjacency matrices A and B, the graph alignment problem is to minimize $||A - PBP^{T}||_{F}$ over all permutation matrices P and where $|| \cdot ||_{F}$ is the Frobenius norm :

$$\mathsf{GAP} = \min_{\pi \in \mathcal{S}_n} \sum_{i,j} \left(\mathbf{A}_{ij} - \mathbf{B}_{\pi(i)\pi(j)} \right)^2,$$

where π is the permutation associated to the permutation matrix **P**. We denote by $\pi^{A \to B}$ a solution to the graph alignment problem.

For unweighted graphs, the coefficients of the matrices A and B are in $\{0, 1\}$, hence $\pi^{A \to B}$ also solves :

$$\max_{\pi \in \mathcal{S}_n} \sum_{i,j} A_{ij} B_{\pi(i)\pi(j)},$$

which is finding a maximum common subgraph in G_A and G_B , known to be APX-hard.

For an algorithm producing a candidate permutation π , we measure its performance through two quantities :

• the accuracy defined by

$$\operatorname{acc}(\pi, \pi^{A \to B}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}(\pi(i) = \pi^{A \to B}(i)).$$
(1)

• the number of common edges defined by

$$\operatorname{nce}(\pi) = \frac{1}{2} \sum_{i,j} A_{ij} B_{\pi(i)\pi(j)} \le \operatorname{nce}(\pi^{A \to B}).$$
(2)

$$\mathsf{GAP} = \max_{\pi \in \mathcal{S}_n} \sum_{i,j} \mathsf{A}_{\pi(i)\pi(j)} \mathsf{B}_{ij}$$

• Take G_A a graph on n vertices and G_B a path (or a cycle) of length n.

$$\mathsf{GAP} = \max_{\pi \in \mathcal{S}_n} \sum_{i,j} \mathsf{A}_{\pi(i)\pi(j)} \mathsf{B}_{ij}$$

- Take G_A a graph on n vertices and G_B a path (or a cycle) of length n. Then, GAP is the **Hamiltonian path/cycle problem** on G_A .
- Take G_A a graph on *n* vertices and G_B a union of two clique of sizes n/2.

$$\mathsf{GAP} = \max_{\pi \in \mathcal{S}_n} \sum_{i,j} \mathsf{A}_{\pi(i)\pi(j)} \mathsf{B}_{ij}$$

- Take G_A a graph on n vertices and G_B a path (or a cycle) of length n. Then, GAP is the **Hamiltonian path/cycle problem** on G_A .
- Take G_A a graph on n vertices and G_B a union of two clique of sizes n/2. Then, GAP is the **minimum bisection problem** on G_A .

$$\mathsf{GAP} = \max_{\pi \in \mathcal{S}_n} \sum_{i,j} \mathsf{A}_{\pi(i)\pi(j)} \mathsf{B}_{ij}$$

- Take G_A a graph on n vertices and G_B a path (or a cycle) of length n. Then, GAP is the **Hamiltonian path/cycle problem** on G_A .
- Take G_A a graph on n vertices and G_B a union of two clique of sizes n/2. Then, GAP is the **minimum bisection problem** on G_A .
- Take $G_A = G_B$, then GAP is the **graph isomorphism problem** solvable in quasipolynomial time Babai (2016).

Random pairs of graphs (G_A, G_B) such that the marginals are the same, i.e. the laws of G_A and G_B are identical but G_A and G_B are correlated. This correlation allows us to control the difficulty of the graph alignment problem. Then a random permutation $\pi^* \in S_n$ is applied on the nodes of G_B to get G'_B and the training is done on the generated triplets (G_A, G'_B, π^*) . Random pairs of graphs (G_A, G_B) such that the marginals are the same, i.e. the laws of G_A and G_B are identical but G_A and G_B are correlated. This correlation allows us to control the difficulty of the graph alignment problem. Then a random permutation $\pi^* \in S_n$ is applied on the nodes of G_B to get G'_B and the training is done on the generated triplets (G_A, G'_B, π^*) .

3 parameters :

the number of nodes n, the average degree d and the noise level p_{noise} .

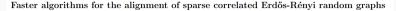
On average, G_A and G_B have $nd/2 = \mathbb{E}[\sum_{ij} A_{ij}/2]$ edges and the noise level p_{noise} controls the number of edges that are different between G_A and G_B so that the average number of common edges is

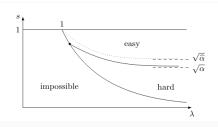
 $(1 - p_{\text{noise}})nd/2 = \mathbb{E}[\sum_{ij}A_{ij}B_{ij}/2].$

Tell me the truth...I'm...I'm ready to hear it.

You don't need machine learning for that.

Recovering the planted permutation (without learning)





Andrea Muratori¹ and Guilhem Semerjian²

Otter's threshold : $\sqrt{\alpha} \approx 0.581$.

Ganassali et al. (2021b), Ganassali et al. (2021a), Piccioli et al. (2022), Ding et al. (2021), Mao et al. (2023), Muratori and Semerjian (2024)

Using basic properties of permutation matrices, we get :

$$\begin{split} \|A - PBP^{T}\|_{F}^{2} &= \|(AP - PB)P^{T}\|_{F}^{2} \\ &= \|AP - PB\|_{F}^{2} \\ &= \|A\|_{F}^{2} + \|B\|_{F}^{2} - 2\langle AP, PB \rangle. \end{split}$$

where $\langle C, D \rangle = \text{trace}(C^T D)$ is the Frobenius inner product.

Using basic properties of permutation matrices, we get :

$$\begin{split} \|A - PBP^{\mathsf{T}}\|_{F}^{2} &= \|(AP - PB)P^{\mathsf{T}}\|_{F}^{2} \\ &= \|AP - PB\|_{F}^{2} \\ &= \|A\|_{F}^{2} + \|B\|_{F}^{2} - 2\langle AP, PB \rangle. \end{split}$$

where $\langle C, D \rangle = \text{trace}(C^T D)$ is the Frobenius inner product.

Replacing the discrete set of permutations matrices S_n by the set of doubly stochastic matrices D_n :

convex relaxation :

$$\arg\min_{D\in\mathcal{D}_n}\|AD-DB\|_F^2=D_{CX}$$

• indefinite relaxation (still NP-hard) :

$$\max_{D\in\mathcal{D}_n}\langle AD, DB\rangle.$$

• convex relaxation :

$$\arg\min_{D\in\mathcal{D}_{R}}\|AD-DB\|_{F}^{2}=D_{CX}$$

• FAQ indefinite relaxation :

 $\max_{D\in \mathcal{D}_n} \langle AD, DB \rangle.$

convex relaxation :

$$\arg\min_{D\in\mathcal{D}_n}\|AD-DB\|_F^2=D_{CX}$$

• FAQ indefinite relaxation :

 $\max_{D\in \mathcal{D}_n} \langle AD, DB \rangle.$

In both continuous relaxations, we use Frank-Wolfe algorithm and obtain a doubly stochastic matrix in \mathcal{D}_n that needs to be projected to the nearest permutation matrix by solving a linear assignment problem (in $O(n^3)$ time) : for $D \in \mathcal{D}_n$, $\max_{P \in S_n} \langle P, D \rangle$. We denote by $\operatorname{Proj}(D) \in S_n$ the resulting projection of D on S_n .

• convex relaxation :

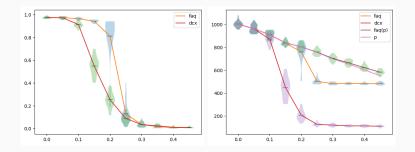
$$\arg\min_{D\in\mathcal{D}_n}\|AD-DB\|_F^2=D_{CX}$$

• FAQ indefinite relaxation :

 $\max_{D\in \mathcal{D}_n} \langle AD, DB \rangle.$

In both continuous relaxations, we use Frank-Wolfe algorithm and obtain a doubly stochastic matrix in \mathcal{D}_n that needs to be projected to the nearest permutation matrix by solving a linear assignment problem (in $O(n^3)$ time) : for $D \in \mathcal{D}_n$, $\max_{P \in S_n} \langle P, D \rangle$. We denote by $\operatorname{Proj}(D) \in S_n$ the resulting projection of D on S_n .

 $FAQ(D) \in S_n$ is the solution obtained with initial condition D and after projection on S_n . There are cases where $Proj(D_{cx})$ is indeed very far from an optimal solution and $FAQ(D_{cx})$ gives a better approximation.



Accuracy (left) and number of common edges (right) as a function of noise.



Accuracy (left) and number of common edges (right) as a function of noise.

SHEN COMIX 🕑

FAQ performs better than GNNs

						1.1	5				
Fraction of Seeds	0%	2%	4%	6%	8%	10%	12%	14%	16%	18%	20%
SeedGNN	0.3	15.1	47.4	82.8	96.0	96.6	97.0	97.6	97.6	97.6	97.6
1-hop (<i>T</i> =6)	0.2	1.5	2.89	4.91	6.0	9.2	12.5	15.3	19.7	23.6	32.3
2-hop (<i>T=3</i>)	0.2	2.4	18.0	57.9	81.1	92.1	95.8	96.4	96.4	96.7	97.0
3-hop (<i>T=2</i>)	0.3	2.4	7.1	29.7	64.9	90.8	96.0	97.1	97.2	97.4	97.5
PGM	0.2	2.3	6.1	16.3	31.6	54.5	73.3	79.2	86.3	88.9	92.7
SGM	0.3	3.6	8.9	13.8	22.3	36.3	54.5	67.3	84.4	89.6	91.6
MGCN	0.1	2.0	4.0	6.7	8.4	11.1	12.4	14.0	16.3	18.9	20.5

Our SeedGNN achieves the following matching accuracy (%) on sparse ER graphs (n = 500, p=0.01, s=0.8):

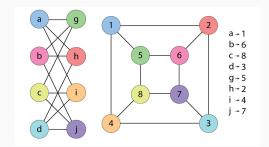
Our SeedGNN achieves the following matching accuracy (%) on dense ER graphs (n = 500, p=0.2, s=0.8):

Fraction of Seeds	0.0	0.5%	1%	1.5%	2%	2.5%	3%	3.5%	4%	4.5%	5%
SeedGNN	0.1	0.7	91.4	100	100	100	100	100	100	100	100
1-hop (<i>T</i> =6)	0.1	0.7	2.3	7.4	95.0	100	100	100	100	100	100
2-hop (<i>T=3</i>)	0.0	0.7	2.2	5.6	46.6	100	100	100	100	100	100
3-hop (<i>T=2</i>)	0.1	0.2	0.38	0.6	0.4	0.54	0.9	1.3	1.2	1.4	2.1
PGM	0.1	0.6	1.8	4.3	19.3	51.2	96.6	100	100	100	100
SGM	0.2	1.5	85.8	100	100	100	100	100	100	100	100
MGCN	0.1	0.7	1.5	1.9	3.7	5.2	6.9	8.0	10.9	12.3	13.7

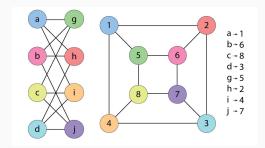
Yu et al. (2023)

Learning with graph symmetries

 $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $V_1 \longrightarrow V_2$ which preserves edges.



 $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there is a bijection $V_1 \longrightarrow V_2$ which preserves edges.



Idea : design a machine learning algorithm whose result does not depend on the representation of the input.

For a permutation $\sigma \in S_n$, we define ($\mathbb{F} = \mathbb{R}^p$ feature space):

• for
$$X \in \mathbb{F}^n$$
, $(\sigma \star X)_{\sigma(i)} = X_i$

• for
$$G \in \mathbb{F}^{n imes n}$$
, $(\sigma \star G)_{\sigma(i_1), \sigma(i_2)} = G_{i_1, i_2}$

For a permutation $\sigma \in S_n$, we define ($\mathbb{F} = \mathbb{R}^p$ feature space) :

• for
$$X \in \mathbb{F}^n$$
, $(\sigma \star X)_{\sigma(i)} = X_i$

• for $G \in \mathbb{F}^{n imes n}$, $(\sigma \star G)_{\sigma(i_1), \sigma(i_2)} = G_{i_1, i_2}$

 G_1, G_2 are isomorphic iff $G_1 = \sigma \star G_2$.

For a permutation $\sigma \in S_n$, we define ($\mathbb{F} = \mathbb{R}^p$ feature space) :

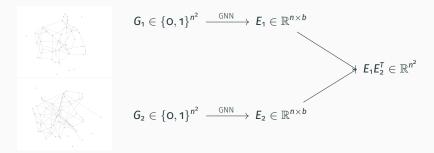
• for
$$X \in \mathbb{F}^n$$
, $(\sigma \star X)_{\sigma(i)} = X_i$

• for $G \in \mathbb{F}^{n imes n}$, $(\sigma \star G)_{\sigma(i_1), \sigma(i_2)} = G_{i_1, i_2}$

 G_1, G_2 are isomorphic iff $G_1 = \sigma \star G_2$.

Definition

(k = 1 or k = 2)A function $f : \mathbb{F}^{n^k} \to \mathbb{F}$ is said to be invariant if $f(\sigma \star G) = f(G)$. A function $f : \mathbb{F}^{n^k} \to \mathbb{F}^n$ is said to be equivariant if $f(\sigma \star G) = \sigma \star f(G)$.



- The same GNN is used for both graphs.
- From the node similarity matrix E₁E₂^T, we extract a mapping from nodes of G₁ to nodes of G₂ (using **Proj** to get a permutation).

The **second step** takes as input two graphs G_A and G_B as well as a similarity matrix $S^{A \to B}$ and produces two rankings r^A and r^B , one for each graph.

Compute the projected permutation $\pi = \operatorname{Proj}(S^{A \to B})$ by solving the linear assignment problem : $\max_{\pi \in S_n} \sum_i S_{i\pi(i)}^{A \to B}$.

Intuition : the entry $S_{ij}^{A \to B}$ is a measure of the similarity between nodes $i \in G_A$ and $j \in G_B$. Hence π is a mapping from nodes in G_A to nodes in G_B which approximately solves the graph matching problem.

The goal of chaining is to improve incrementally this approximation.

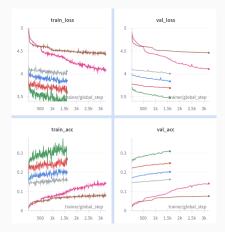
The **second step** takes as input two graphs G_A and G_B as well as a similarity matrix $S^{A \to B}$ and produces two rankings r^A and r^B , one for each graph.

Compute the projected permutation $\pi = \operatorname{Proj}(S^{A \to B})$ by solving the linear assignment problem : $\max_{\pi \in S_n} \sum_i S^{A \to B}_{i\pi(i)}$.

Intuition : the entry $S_{ij}^{A \to B}$ is a measure of the similarity between nodes $i \in G_A$ and $j \in G_B$. Hence π is a mapping from nodes in G_A to nodes in G_B which approximately solves the graph matching problem.

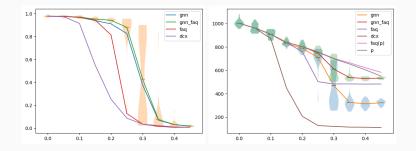
The goal of chaining is to improve incrementally this approximation.

For this, we need to transfer the information contained in π into node features for both graphs : compute a score for each node i in the graph A by $s(i) = \sum_{j} A_{ij} B_{\pi(i)\pi(j)}$. We can then sort the nodes in A in decreasing order of their scores s(i) and obtain a ranking $r^A \in S_n$ for the nodes in A. In order to get the ranking r^B , we use the permutation $\pi : G_A \to G_B$ as follows : $r_i^B = \pi (r_i^A)$.



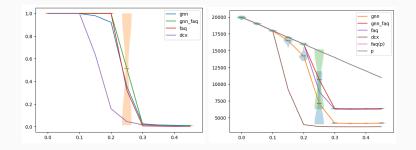
Training chained GNNs. Each color corresponds to a different training and GNN.

Erdős-Rényi (*n* = 500, *d* = 4)

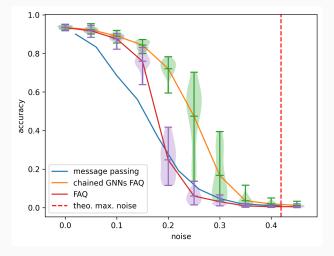


Accuracy (left) and number of common edges (right) as a function of noise.

Erdős-Rényi (*n* = 500, *d* = 80)



Accuracy (left) and number of common edges (right) as a function of noise.



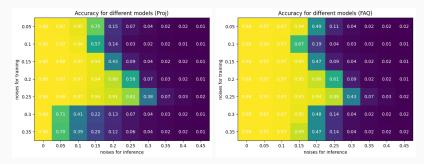


Figure 2 – Each line corresponds to a chained FGNN trained at a given level of noise and evaluated across all different level of noises. Performances are **acc** for sparse Erdős-Rényi (ER 4) with last operation **Proj** (left) or **FAQ** (right).

Varying the number of steps in chaining

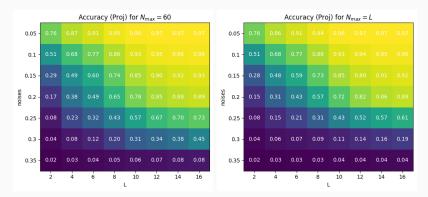
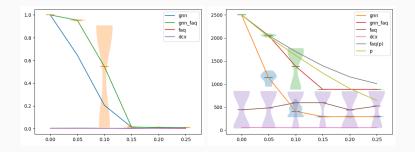


Figure 3 – Accuracy for a chained FGNN on sparse Erdős-Rényi graphs (trained at optimal noise level). Each column corresponds to a different *L*, with **looping** and $N_{max} = 60$ on the left and no looping, $N_{max} = L$ on the right. Each line corresponds to a different noise level for inference.



Accuracy (left) and number of common edges (right) as a function of noise.

- General problem : how to learn a permutation?
- What is the role of chaining? It allows us to use GNNs in an iterative algorithm Similar to diffusions, can it be interpreted as a denoising?
- GNNs chaining is working for correlated random graphs!
- Results with GNNs corroborate theoretical predictions.
- New hard instances (regular graphs) are solved with GNNs (and I do not know of any alternative solutions).

Thank You!

Références

- L. Babai. Graph isomorphism in quasipolynomial time. In *Proceedings of the forty-eighth annual ACM symposium on Theory of Computing*, pages 684–697, 2016.
- M. Böther, O. Kißig, M. Taraz, S. Cohen, K. Seidel, and T. Friedrich. What's wrong with deep learning in tree search for combinatorial optimization. *ICLR*, 2022.
- Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Veličković. Combinatorial optimization and reasoning with graph neural networks. *Journal of Machine Learning Research*, 24(130) :1–61, 2023.
- J. Ding, Z. Ma, Y. Wu, and J. Xu. Efficient random graph matching via degree profiles. *Probability Theory and Related Fields*, 179 :29–115, 2021.
- L. Ganassali, L. Massoulié, and M. Lelarge. Correlation detection in trees for planted graph alignment. *arXiv preprint arXiv :2107.07623*, 2021a.
- L. Ganassali, L. Massoulié, and M. Lelarge. Impossibility of partial recovery in the graph alignment problem. In *Conference on Learning Theory*, pages 2080–2102. PMLR, 2021b.
- C. Mao, Y. Wu, J. Xu, and S. H. Yu. Random graph matching at otter's threshold via counting chandeliers. In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing*, pages 1345–1356, 2023.