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Can GNN solve combinatorial optimization problems ?

1



GNNs ’solving’ the maximum independent set problem

Despite careful attempts, Böther et al. (2022) were incapable of reproducing
the results, even reporting that using random weights in the GNN yields
similar results as the trained weights. Thus, at this moment this approach
should be considered at best inconclusive (...)

from Cappart et al. (2023)
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Graph Alignment Problem (GAP)

Given two n× n adjacency matrices A and B, the graph alignment problem is
to minimize ∥A− PBPT∥F over all permutation matrices P and where ∥ · ∥F is
the Frobenius norm :

GAP = min
π∈Sn

∑
i,j

(
Aij − Bπ(i)π(j)

)2
,

where π is the permutation associated to the permutation matrix P. We
denote by πA→B a solution to the graph alignment problem.

For unweighted graphs, the coefficients of the matrices A and B are in {0, 1},
hence πA→B also solves :

max
π∈Sn

∑
i,j

AijBπ(i)π(j),

which is finding a maximum common subgraph in GA and GB, known to be
APX-hard.
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Measure of performances

For an algorithm producing a candidate permutation π, we measure its
performance through two quantities :

• the accuracy defined by

acc(π, πA→B) =
1
n

n∑
i=1

1(π(i) = πA→B(i)). (1)

• the number of common edges defined by

nce(π) = 1
2
∑
i,j

AijBπ(i)π(j) ≤ nce(πA→B). (2)
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Graph alignment is a hard problem

GAP = max
π∈Sn

∑
i,j

Aπ(i)π(j)Bij

• Take GA a graph on n vertices and GB a path (or a cycle) of length n.

Then, GAP is the Hamiltonian path/cycle problem on GA.
• Take GA a graph on n vertices and GB a union of two clique of sizes n/2.

Then, GAP is the minimum bisection problem on GA.
• Take GA = GB, then GAP is the graph isomorphism problem solvable in

quasipolynomial time Babai (2016).
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Synthetic datasets

Random pairs of graphs (GA,GB) such that the marginals are the same, i.e.
the laws of GA and GB are identical but GA and GB are correlated. This
correlation allows us to control the difficulty of the graph alignment
problem. Then a random permutation π⋆ ∈ Sn is applied on the nodes of GB
to get G′

B and the training is done on the generated triplets (GA,G′
B, π

⋆).

3 parameters :
the number of nodes n, the average degree d and the noise level pnoise.

On average, GA and GB have nd/2 = E[
∑

ij Aij/2] edges and the noise level
pnoise controls the number of edges that are different between GA and GB so
that the average number of common edges is
(1− pnoise)nd/2 = E[

∑
ij AijBij/2].
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Recovering the planted permutation (without learning)

Otter’s threshold :
√
α ≈ 0.581.

Ganassali et al. (2021b), Ganassali et al. (2021a), Piccioli et al. (2022), Ding
et al. (2021), Mao et al. (2023), Muratori and Semerjian (2024)
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Continuous relaxations of GAP (1)

Using basic properties of permutation matrices, we get :

∥A− PBPT∥2F = ∥(AP− PB)PT∥2F
= ∥AP− PB∥2F
= ∥A∥2F + ∥B∥2F − 2⟨AP,PB⟩.

where ⟨C,D⟩ = trace(CTD) is the Frobenius inner product.

Replacing the discrete set of permutations matrices Sn by the set of doubly
stochastic matrices Dn :

• convex relaxation :

arg min
D∈Dn

∥AD− DB∥2F = Dcx

• indefinite relaxation (still NP-hard) :

max
D∈Dn

⟨AD,DB⟩.
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Continuous relaxations of GAP (2)

• convex relaxation :

arg min
D∈Dn

∥AD− DB∥2F = Dcx

• FAQ indefinite relaxation :

max
D∈Dn

⟨AD,DB⟩.

In both continuous relaxations, we use Frank-Wolfe algorithm and obtain a
doubly stochastic matrix in Dn that needs to be projected to the nearest
permutation matrix by solving a linear assignment problem (in O(n3) time) :
for D ∈ Dn, maxP∈Sn⟨P,D⟩. We denote by Proj(D) ∈ Sn the resulting
projection of D on Sn.

FAQ(D) ∈ Sn is the solution obtained with initial condition D and after
projection on Sn. There are cases where Proj(Dcx) is indeed very far from an
optimal solution and FAQ(Dcx) gives a better approximation.
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Erdős-Rényi (n = 500,d = 4)

Accuracy (left) and number of common edges (right) as a function of noise.
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Erdős-Rényi (n = 500,d = 80)

Accuracy (left) and number of common edges (right) as a function of noise.
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FAQ performs better than GNNs

Yu et al. (2023) 15



Learning with graph symmetries



Graph isomorphism

G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection V1 −→ V2
which preserves edges.

Idea : design a machine learning algorithm whose result does not depend on
the representation of the input.
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Invariant and equivariant functions

For a permutation σ ∈ Sn, we define (F = Rp feature space) :

• for X ∈ Fn, (σ ⋆ X)σ(i) = Xi
• for G ∈ Fn×n, (σ ⋆ G)σ(i1),σ(i2) = Gi1,i2

G1,G2 are isomorphic iff G1 = σ ⋆ G2.

Definition
(k = 1 or k = 2)

A function f : Fn
k
→ F is said to be invariant if f (σ ⋆ G) = f (G).

A function f : Fn
k
→ Fn is said to be equivariant if f (σ ⋆ G) = σ ⋆ f (G).
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Learning the graph alignment problem with Siamese GNNs

G1 ∈ {0, 1}n
2

E1 ∈ Rn×b

E1ET2 ∈ Rn2

G2 ∈ {0, 1}n
2

E2 ∈ Rn×b

GNN

GNN

• The same GNN is used for both graphs.
• From the node similarity matrix E1ET2 , we extract a mapping from nodes

of G1 to nodes of G2 (using Proj to get a permutation).
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Chaining FGNNs

The second step takes as input two graphs GA and GB as well as a similarity
matrix SA→B and produces two rankings rA and rB, one for each graph.

Compute the projected permutation π = Proj(SA→B) by solving the linear
assignment problem : maxπ∈Sn

∑
i S

A→B
iπ(i) .

Intuition : the entry SA→B
ij is a measure of the similarity between nodes i ∈ GA

and j ∈ GB. Hence π is a mapping from nodes in GA to nodes in GB which
approximately solves the graph matching problem.

The goal of chaining is to improve incrementally this approximation.

For this, we need to transfer the information contained in π into node
features for both graphs : compute a score for each node i in the graph A by
s(i) =

∑
j AijBπ(i)π(j). We can then sort the nodes in A in decreasing order of

their scores s(i) and obtain a ranking rA ∈ Sn for the nodes in A. In order to
get the ranking rB, we use the permutation π : GA → GB as follows :
rBi = π

(
rAi
)
.
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Training procedure

Training chained GNNs. Each color corresponds to a different training and
GNN.
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Erdős-Rényi (n = 500,d = 4)

Accuracy (left) and number of common edges (right) as a function of noise.
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Erdős-Rényi (n = 500,d = 80)

Accuracy (left) and number of common edges (right) as a function of noise.
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Erdős-Rényi (n = 1000,d = 3, training 0.25)
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Training : optimal noise level

Figure 2 – Each line corresponds to a chained FGNN trained at a given level of noise
and evaluated across all different level of noises. Performances are acc for sparse
Erdős-Rényi (ER 4) with last operation Proj (left) or FAQ (right).
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Varying the number of steps in chaining

Figure 3 – Accuracy for a chained FGNN on sparse Erdős-Rényi graphs (trained at
optimal noise level). Each column corresponds to a different L, with looping and
Nmax = 60 on the left and no looping, Nmax = L on the right. Each line corresponds to
a different noise level for inference.

25



Regular (n = 500,d = 10)

Accuracy (left) and number of common edges (right) as a function of noise.
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Conclusion

• General problem : how to learn a permutation?
• What is the role of chaining?

It allows us to use GNNs in an iterative algorithm
Similar to diffusions, can it be interpreted as a denoising?

• GNNs chaining is working for correlated random graphs !
• Results with GNNs corroborate theoretical predictions.
• New hard instances (regular graphs) are solved with GNNs (and I do not

know of any alternative solutions).
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Thank You !
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