COMBINATORIAL OPTIMIZATION WITH GRAPH NEURAL NETWORK:
CHAINING TO LEARN THE GRAPH ALIGNMENT PROBLEM

Marc Lelarge
INRIA, DI/ENS, PSL Research University

IRIT - Toulouse - December 2024

Can GNN solve combinatorial optimization problems?

Combinatorial Optimization and Reasoning
with Graph Neural Networks

Quentin Cappart QUENTIN.CAPPART@POLYMTL.CA
Department of Computer Engineering and Software Engineering

Polytechnigue Montréal

Montréal, Canada

Didier Chételat DIDIER.CHETELAT@POLYMTL.CA
CERC in Data Science for Real-Time Decision-Making

Polytechnique Montréal

Montréal, Canada

Elias B. Khalil KHALILGMIE.UTORONTO.CA
Department of Mechanical & Industrial Engineering

University of Toronto

Toronto, Canada

Andrea Lodi ANDREA.LODI@CORNELL.EDU
Jacobs Technion-Cornell Institute

Cornell Tech and Technion - I[IT

New York, USA

Christopher Morris MORRIS@QCS.RWTH-AACHEN.DE
Department of Computer Science
RWTH Aachen University

Aachen, Germany

Petar Velickovié PETARV@DEEPMIND.COM
DeepMind
London, UK

GNNs 'solving’ the maximum independent set problem

Cracking nuts with a sledgehammer: when modern graph
neural networks do worse than classical greedy algorithms

Maria Chiara Angelini'? Federico Ricci-Tersenghi'??

GNNs 'solving’ the maximum independent set problem

Cracking nuts with a sledgehammer: when modern graph
neural networks do worse than classical greedy algorithms

Maria Chiara Angelini'? Federico Ricci-Tersenghi'??

Despite careful attempts, Bother et al. (2022) were incapable of reproducing
the results, even reporting that using random weights in the GNN yields
similar results as the trained weights. Thus, at this moment this approach
should be considered at best inconclusive (...)

from Cappart et al. (2023)

Graph Alignment Problem (GAP)

Given two n x n adjacency matrices A and B, the graph alignment problem is
to minimize ||A — PBPT||r over all permutation matrices P and where || - || is
the Frobenius norm :

GAP—mmZ i — ﬂﬂ())v

TESh i

where 7 is the permutation associated to the permutation matrix P. We
denote by 778 a solution to the graph alignment problem

Graph Alignment Problem (GAP)

Given two n x n adjacency matrices A and B, the graph alignment problem is
to minimize ||A — PBPT||r over all permutation matrices P and where || - || is
the Frobenius norm :

GAP—mmZ i — ﬂﬂ())v

TESh

where 7 is the permutation associated to the permutation matrix P. We
denote by 778 a solution to the graph alignment problem

For unweighted graphs, the coefficients of the matrices A and B are in {0, 1},
hence 7*~8 also solves :
max) AjiBr(iyn(),
i
which is finding a maximum common subgraph in G4 and Gg, known to be

APX-hard.

Measure of performances

For an algorithm producing a candidate permutation 7, we measure its
performance through two quantities :

e the accuracy defined by

acc(r, ™ 8) = % S a(n(i) = 78(i)). (1)

i=1

e the number of common edges defined by

1
nce(7r) = 5 ZAijBﬂ'(i)ﬂ(j) < nce(wA_’B). (2)
i

Graph alignment is a hard problem

P = (e ZAw(i)w(/‘)Bii
1)

e Take G, a graph on n vertices and Gg a path (or a cycle) of length n.

Graph alignment is a hard problem

P = (e ZAw(i)w(/‘)Bii
1)

e Take G, a graph on n vertices and Gg a path (or a cycle) of length n.
Then, GAP is the Hamiltonian path/cycle problem on G,.
e Take Ga a graph on n vertices and Gg a union of two clique of sizes n/2.

Graph alignment is a hard problem

P = (e ZAw(i)w(/‘)Bii
1)

e Take G, a graph on n vertices and Gg a path (or a cycle) of length n.
Then, GAP is the Hamiltonian path/cycle problem on G,.

e Take Ga a graph on n vertices and Gg a union of two clique of sizes n/2.
Then, GAP is the minimum bisection problem on G,.

Graph alignment is a hard problem

P = (e ZAw(i)w(/‘)Bii
1)

e Take G, a graph on n vertices and Gg a path (or a cycle) of length n.
Then, GAP is the Hamiltonian path/cycle problem on G,.

e Take Ga a graph on n vertices and Gg a union of two clique of sizes n/2.
Then, GAP is the minimum bisection problem on G,.

e Take Ga = Gg, then GAP is the graph isomorphism problem solvable in
quasipolynomial time Babai (2016).

Synthetic datasets

Random pairs of graphs (Ga, Gg) such that the marginals are the same, i.e.
the laws of G4 and Gg are identical but G4 and Gg are correlated. This
correlation allows us to control the difficulty of the graph alignment
problem. Then a random permutation 7* € S, is applied on the nodes of Gg
to get Gg and the training is done on the generated triplets (Ga, G, 7).

Synthetic datasets

Random pairs of graphs (Ga, Gg) such that the marginals are the same, i.e.
the laws of G4 and Gg are identical but G4 and Gg are correlated. This
correlation allows us to control the difficulty of the graph alignment
problem. Then a random permutation 7* € S, is applied on the nodes of Gg
to get Gg and the training is done on the generated triplets (Ga, G, 7).

3 parameters :
the number of nodes n, the average degree d and the noise level p, ;..

On average, Ga and Gg have nd/2 = E[}; A;;/2] edges and the noise level
Proise CONtrols the number of edges that are different between G, and Gg so
that the average number of common edges is

(1 - pno’\se)nd/2 = E[ZijAUBU/z]-

Tell me the truth::I'm..I'm ready
to hear it.

You don’t need machine
learning for that.

Recovering the planted permutation (without learning)

Faster algorithms for the alignment of sparse correlated Erdds-Rényi random graphs

Andrea Muratori' and Guilhem Semerjian?

impossible hard

Otter’s threshold : \/a ~ 0.581.

Ganassali et al. (2021b), Ganassali et al. (2021a), Piccioli et al. (2022), Ding
et al. (2021), Mao et al. (2023), Muratori and Semerjian (2024)

Continuous relaxations of GAP (1)

Using basic properties of permutation matrices, we get :

IA — PBPT| = [|(AP — PB)PT 2
— |laP — PBI:
— |IAJl: + 1B — 2(AP, PB).

where (C, D) = trace(C'D) is the Frobenius inner product.

Continuous relaxations of GAP (1)

Using basic properties of permutation matrices, we get :

IA — PBPT| = [|(AP — PB)PT 2
— |laP — PBI:
— |IAJl: + 1B — 2(AP, PB).

where (C, D) = trace(C'D) is the Frobenius inner product.

Replacing the discrete set of permutations matrices S, by the set of doubly
stochastic matrices Dy :

e convex relaxation :
q 2
arg min ||AD — DBJ|f = D
e indefinite relaxation (still NP-hard) :

max (AD, DB).
DeDp

Continuous relaxations of GAP (2)

e convex relaxation :
. s
73 g ||AD — DB||r = D
¢ FAQ indefinite relaxation :

max (AD, DB).

DeDp

Continuous relaxations of GAP (2)

e convex relaxation :
o 2
73 g ||AD — DB||r = D
¢ FAQ indefinite relaxation :

max (AD, DB).

DEDy
In both continuous relaxations, we use Frank-Wolfe algorithm and obtain a
doubly stochastic matrix in D, that needs to be projected to the nearest
permutation matrix by solving a linear assignment problem (in O(n3) time) :
for D € Dp, maxpes, (P, D). We denote by Proj(D) € S, the resulting
projection of D on Sp.

Continuous relaxations of GAP (2)

e convex relaxation :

arg min |AD — DB||} = D

¢ FAQ indefinite relaxation :

max (AD, DB).

DEDy
In both continuous relaxations, we use Frank-Wolfe algorithm and obtain a
doubly stochastic matrix in D, that needs to be projected to the nearest
permutation matrix by solving a linear assignment problem (in O(n3) time) :
for D € Dp, maxpes, (P, D). We denote by Proj(D) € S, the resulting
projection of D on Sp.

FAQ(D) € Sy is the solution obtained with initial condition D and after
projection on Sy. There are cases where Proj(D«) is indeed very far from an
optimal solution and FAQ(D«) gives a better approximation.

Erdés-Rényi (n = 500, d = 4)

w0004 € ¢

400

Accuracy (left) and number of common edges (right) as a function of noise.

Erdés-Rényi (n = 500, d = 80)

10
20000 { <
08 17500
15000
0.6
12500
04 10000
7500
02
5000
0.0
0.0 01 0.2 03 04 00 01 02 03 04

Accuracy (left) and number of common edges (right) as a function of noise.

SHEN COMIX &

FAQ performs better than GNNs

Our SeedGNN achieves the following matching accuracy (%) on sparse ER graphs (n = 500, p=0.01, s=0.8):

Fraction of Seeds 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

SeedGNN 03 151 474 828 9.0 96 970 976 976 976 976
1-hop (T=6) 02 15 289 491 6.0 9.2 125 153 | 197 236 323
2-hop (T=3) 02 24 180 579 811 921 958 9.4 9.4 967 97.0
3-hop (T=2) 03 24 751 29.7 649 908 96.0 971 972 974 975
PGM 02 23 6.1 163 316 545 733 792 863 889 927
SGM 03 36 8.9 138 223 363 545 673 844 896 916
MGCN 01 20 4.0 6.7 8.4 1.1 124 140 163 189 205

Our SeedGNN achieves the following matching accuracy (%) on dense ER graphs (n = 500, p=0.2, 5=0.8):

Fraction of Seeds 0.0 0.5% 1% 15% 2% 2.5% 3% 35% 4% 45% 5%

SeedGNN 01 07 91.4 | 100 100 100 100 100 100 100 100
1-hop (T=6) 01 07 23 7.4 95.0 100 100 100 100 100 100
2-hop (T=3) 00 07 2.2 5.6 46.6 | 100 100 100 100 100 100
3-hop (T=2) 01 02 038 06 0.4 0.54 0.9 13 1.2 1.4 23]

PGM 0.1 06 1.8 4.3 193 512 96.6 = 100 100 100 100
SGM 02 15 85.8 100 100 100 100 100 100 100 100
MGCN 01 07 1.5 1.9 3.7 5.2 6.9 8.0 109 123 13.7

Yu et al. (2023) 15

Learning with graph symmetries

Graph isomorphism

Gy = (V4,E7) and G, = (Va, E>) are isomorphic if there is a bijection V3 — V,
which preserves edges.

4

+

+

oo

+
NBhANUTWoOO =

4

— T Swuanocw
v

Graph isomorphism

Gy = (V4,E7) and G, = (Va, E>) are isomorphic if there is a bijection V3 — V,
which preserves edges.

4

+

+

oo

+
NBhANUTWoOO =

4

— T Swuanocw
v

Idea: design a machine learning algorithm whose result does not depend on
the representation of the input.

Invariant and equivariant functions

For a permutation o € S,, we define (F = RP feature space) :

e forX e]Fn, (O'*X)(,(,') =6

e forG e]ann, (0’ * G)J(,'1)7g(,'2) = G,'h,'2

Invariant and equivariant functions

For a permutation o € S,, we define (F = RP feature space) :

e forX e]Fn, (O'*X)(,(,') =6

e forG e]ann, (0’ * G)J(,'1)7g(,'2) = G,'h,'2

G,, G, are isomorphic iff Gy = o x G..

Invariant and equivariant functions

For a permutation o € S,, we define (F = RP feature space) :
e forX e]Fn, (O'*X)(,(,') =6
e forG e]ann, (0’ * G)J(,'1)7g(,'2) = G,'h,'2

G,, G, are isomorphic iff Gy = o x G..

Definition
(R=10rk=2)

A function f : F™ - Fis said to be invariant if f(o*G) =f(G).
A function f : F™ — F" is said to be equivariant if (o * G) = o f(G).

Learning the graph alignment problem with Siamese GNNs

Gy e {o,1}" — M, F eRrb
E.E] ¢ R™
G, € {0,1}" — _, F, e R"P

e The same GNN is used for both graphs.

e From the node similarity matrix E,El, we extract a mapping from nodes
of G, to nodes of G, (using Proj to get a permutation).

Chaining FGNNs

The second step takes as input two graphs Ga and Gg as well as a similarity
matrix S8 and produces two rankings r* and r®, one for each graph.

Compute the projected permutation = = Proj(S*~8) by solving the linear
assignment problem : maxres, Sm(,

Intuition : the entry SA*B is a measure of the similarity between nodes i € Ga
and j € Gg. Hence w is @ mapping from nodes in G4 to nodes in Gg which
approximately solves the graph matching problem.

The goal of chaining is to improve incrementally this approximation.

Chaining FGNNs

The second step takes as input two graphs Ga and Gg as well as a similarity
matrix S8 and produces two rankings r* and r®, one for each graph.

Compute the projected permutation 7 = Proj(S*~8) by solving the linear
assignment problem : maxres, >; S m(,

Intuition : the entry SA*B is a measure of the similarity between nodes i € Ga
and j € Gg. Hence w is @ mapping from nodes in G4 to nodes in Gg which
approximately solves the graph matching problem.

The goal of chaining is to improve incrementally this approximation.

For this, we need to transfer the information contained in 7 into node
features for both graphs : compute a score for each node i in the graph A by
s(i) = 3=, AjBr(iyx()- We can then sort the nodes in A in decreasing order of
their scores s(i) and obtain a ranking r* € S, for the nodes in A. In order to
get the ranking r®, we use the permutation « : G4 — Gg as follows :

2 = ().

Training procedure

train_loss val_loss

4 4
The——a,
R RE—
35 ainer/global_step 35 *“xaﬂ‘ rer/global_step

500 1k 1sk 2k 25k 3k 500 1k L5k 2k 25k 3k

train_acc val_acc

500 1k 1sk 2k 25k 3k 500 1k 15k 2k 25k 3k

Training chained GNNs. Each color corresponds to a different training and
GNN.

20

Erdés-Rényi (n = 500, d = 4)

gnn
1000

Accuracy (left) and number of common edges (right) as a function of noise.

21

Erdés-Rényi (n = 500, d = 80)

20000

17500

15000

12500

10000

7500

5000

Accuracy (left) and number of common edges (right) as a function of noise.

22

Erdés-Rényi (n = 1000, d = 3, training 0.25)

1.0
0.8 1
0.6
>
Q
e
=]
53
© 0.4
0.2 —— message passing
—— chained GNNs FAQ
— FAQ
0.0 ——- theo. max. noise
0.0 0.1

noise

23

Training : optimal noise level

Accuracy for different models (Proj) Accuracy for different models (FAQ)

015 015

noises for training
°
4

noises for training
°

025 025

035 X . . 0.06 035

015 02 025 03
noises for inference

025 03
noises for inference

Figure 2 - Each line corresponds to a chained FGNN trained at a given level of noise
and evaluated across all different level of noises. Performances are acc for sparse
ErdGs-Rényi (ER &) with last operation Proj (left) or FAQ (right).

2

Varying the number of steps in chaining

Accuracy (Proj) for Npax = 60 Accuracy (Proj) for Npax =L

noises

0.06 011 0.14 016 019

0.02 005 006 007 008 008 . 0.02 004 0.04 004 004

Figure 3 — Accuracy for a chained FGNN on sparse Erdés-Rényi graphs (trained at
optimal noise level). Each column corresponds to a different L, with looping and

Nmax = 60 on the left and no looping, Nmax = L on the right. Each line corresponds to
a different noise level for inference.

25

Regular (n = 500, d = 10)

10 — ogm 2500
— gnn_fag
— fag
08 — dex 2000
0.6 1500
0.4 1000
02 500
0.0 o
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 015 0.20 0.25

Accuracy (left) and number of common edges (right) as a function of noise.

26

e General problem : how to learn a permutation?

e What is the role of chaining?
It allows us to use GNNs in an iterative algorithm
Similar to diffusions, can it be interpreted as a denoising?

e GNNs chaining is working for correlated random graphs!
e Results with GNNs corroborate theoretical predictions.

e New hard instances (regular graphs) are solved with GNNs (and | do not
know of any alternative solutions).

27

Thank You!

Références

L. Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages
684-697, 2016.

M. Bother, O. KiBig, M. Taraz, S. Cohen, K. Seidel, and T. Friedrich. What's
wrong with deep learning in tree search for combinatorial optimization.
ICLR, 2022.

Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Velickovic.
Combinatorial optimization and reasoning with graph neural networks.
Journal of Machine Learning Research, 24(130) :1-61, 2023.

J. Ding, Z. Ma, Y. Wu, and J. Xu. Efficient random graph matching via degree
profiles. Probability Theory and Related Fields, 179 :29-115, 2021.

L. Ganassali, L. Massoulié, and M. Lelarge. Correlation detection in trees for
planted graph alignment. arXiv preprint arXiv :2107.07623, 2021a.

L. Ganassali, L. Massoulié, and M. Lelarge. Impossibility of partial recovery in
the graph alignment problem. In Conference on Learning Theory, pages
2080-2102. PMLR, 2021b.

C. Mao, Y. Wu, J. Xu, and S. H. Yu. Random graph matching at otter’s threshold
via counting chandeliers. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pages 1345-1356, 2023.

28

https://openreview.net/forum?id=ryGs6iA5Km

	Learning with graph symmetries
	Thank You!
	Références

