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Outline

▶ Motivation

▶ Model and analysis

▶ On-going work

based on two papers:
F-Tibi (AAP’18) and F-Mohamed (Arxiv’+24).



Motivation: large bike/car sharing systems

Autolib’ Velib’ Flex Communauto
Montreal

Bike/car-sharing networks

▶ M bikes/cars

▶ N stations

▶ users take a bike/car at any station, make a trip to another
station then return it there.

Two types of failures
no bike/car= rejection, no parking space



There is an imbalance

empty saturated well-balanced

Inhomogeneity Inevitable: popular stations ̸= popular destinations

Aim of the work: probability of failures

- no bike/car

- no parking space



First models: with product-form

▶ unlimited capacity
(Fayolle-Lasgouttes’96; George-Xia’10)

- No blocking of bikes/cars (parking is always possible)
- but rejection of users (empty stations)

Assume:

- Poisson p.p (µi ) of user arivals at station i
- trip from station i to destination j with probability qij
with Q Markovian irreducible with invariant vector ν

- trip duration from i to j exp(µ[ij])
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The underlying closed Jackson network

Forget the users. Look only at bikes. Bikes are:

- alternatively at stations and routes

- wait on a line at station: one-server mechanism

- simultaneously handled at routes: infinite-server mechanism

⇒ bikes = customers in a closed Jackson network with two types
of nodes

- N one-server nodes : stations i

- N2 infinite-server nodes : routes [ij ]

⇒ Product-form invariant measure.



Our work: finite capacity stations

1. Modeling

- propose finite capacity Jackson networks for bike systems

- having product-form invariant measure

2. Analysis

- at stationarity , in the large network limit (M,N →∞)

- prove asymptotic independence, with explicit marginals

- by proving the equivalence of ensembles



Equivalence of ensembles
Consider a product-form probability measure

π(x) = P(ξ1 = x1, . . . , ξN = xN) =
1

Z

N∏
l=1

ϕl(xl)

on non-product state-space

S = {x ∈ NN ,

N∑
l=1

xl = M, xl ≤ cl if cl < +∞}

where 1 ≤ cl ≤ +∞ and Z the normalizing constant.

Then for any γ > 0,

π(x) =
1

Z (γ)

N∏
l=1

γxlϕl(xl) = P(ηγ1 = x1, . . . η
γ
N = xN |

N∑
l=1

ηγl = M)

where ηγ1 , . . . , η
γ
N are independent r.v. with distributions

P(ηγl = xl) =
1

Zl(γ)
γxlϕl(xl), xl ≤ cl if cl < +∞.
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Equivalence of ensembles

- Fixed k-dimensional marginal of π is

P(ξ1 = x1, . . . , ξk = xk) = P(ηγ1 = x1, . . . η
γ
k = xk |

N∑
l=1

ηγl = M)

= P(ηγ1 = x1, . . . η
γ
k = xk)

P(
∑N

l=k+1 η
γ
l = M −

∑k
l=1 xl)

P(
∑N

l=1 η
γ
l = M)

- Choose γ (unique) such that E
(∑N

l=1 η
γ
l

)
= M.

- Prove Local limit Theorem for independent non i.d. variables.
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- If N,M →∞ with, for b2N = Var(ηγ1 ) + . . .+Var(ηγN),

bN →∞ and
∑N

l=1 E
(
|ηγl − E(ηγl )|

3
)
= o(b3N) then

P

(
N∑
l=1

ηγl = M

)
∼ P

(
N∑

l=k+1

ηγl = M −
k∑

l=1

xl

)
∼ (bN

√
2π)−1.

Hence P(ξ1 = x1, . . . , ξk = xk) ∼ P(ηγ1 = x1, . . . , η
γ
k = xk).

Moreover Z ∼ γ−M(bN
√
2π)−1

∏N
l=1 Zl(γ).

References
A. I. Khinchin (1949) (grand canonical approximation)
R.L. Dobrushin and B. Tirozzi (1977) (Gibbs measures)
C. Kipnis and C. Landim (1999) (zero range)
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Bike-sharing model with finite capacity

▶ Station i has parking capacity ci < +∞

▶ Same dynamics as before, but

▶ When station j is saturated,
bike at end of route [ij ] takes route [jk] with probability qjk .

Theorem (Product-form, F-Tibi’18)

Stationary distribution (for node states):

π(x) =
1

Z

N∏
i=1

(νi/µi )
xi

∏
1≤i ,j≤N

(νiqij/µ[ij])
x[ij]

x[ij]!

on space S = {x ∈ NN+N2
,
∑

i xi +
∑

ij x[ij] = M, and xi ≤ ci}.
Proof: Special case of blocking and rerouting policy
(Quadrat-Viot’80, Economou-Fakinos’98)



Bike-sharing model with finite capacity

▶ Station i has parking capacity ci < +∞
▶ Same dynamics as before, but

▶ When station j is saturated,
bike at end of route [ij ] takes route [jk] with probability qjk .

Theorem (Product-form, F-Tibi’18)

Stationary distribution (for node states):

π(x) =
1

Z

N∏
i=1

(νi/µi )
xi

∏
1≤i ,j≤N

(νiqij/µ[ij])
x[ij]

x[ij]!

on space S = {x ∈ NN+N2
,
∑

i xi +
∑

ij x[ij] = M, and xi ≤ ci}.
Proof: Special case of blocking and rerouting policy
(Quadrat-Viot’80, Economou-Fakinos’98)



Bike-sharing model with finite capacity

▶ Station i has parking capacity ci < +∞
▶ Same dynamics as before, but

▶ When station j is saturated,
bike at end of route [ij ] takes route [jk] with probability qjk .

Theorem (Product-form, F-Tibi’18)

Stationary distribution (for node states):

π(x) =
1

Z

N∏
i=1

(νi/µi )
xi

∏
1≤i ,j≤N

(νiqij/µ[ij])
x[ij]

x[ij]!

on space S = {x ∈ NN+N2
,
∑

i xi +
∑

ij x[ij] = M, and xi ≤ ci}.

Proof: Special case of blocking and rerouting policy
(Quadrat-Viot’80, Economou-Fakinos’98)



Bike-sharing model with finite capacity

▶ Station i has parking capacity ci < +∞
▶ Same dynamics as before, but

▶ When station j is saturated,
bike at end of route [ij ] takes route [jk] with probability qjk .

Theorem (Product-form, F-Tibi’18)

Stationary distribution (for node states):

π(x) =
1

Z

N∏
i=1

(νi/µi )
xi

∏
1≤i ,j≤N

(νiqij/µ[ij])
x[ij]

x[ij]!

on space S = {x ∈ NN+N2
,
∑

i xi +
∑

ij x[ij] = M, and xi ≤ ci}.
Proof: Special case of blocking and rerouting policy
(Quadrat-Viot’80, Economou-Fakinos’98)



Bike-sharing model with finite capacity

Theorem (Large system, F-Tibi’18)

Assume N,M →∞, M/N → cst, ci uniformly bounded,
µi , µij = O(1) and νi = O(1/N).
Then a finite number of stations and routes are asymptotically
independent with limiting distributions

▶ geom( γνi/µi , ci ) for station i

▶ Poisson (γνiqij/µ[ij]) for route [ij ]

where γ solves∑
i

E(geom(γνi/µi , ci ))+
∑
ij

γ(νiqij/µ[ij]) = M.

Proof: proving Local Limit Theorem for mixed truncated geometric
and Poisson variables.
Remark: In a one-route version: independence only for stations .



Performance

Assuming known parameters ci , µi , µij , qij (thus νi ),

choose M ⇐⇒ choose γ.

Optimize a performance parameter.
Example: total rate of rejection+blocking

τ=
∑
i

µiP(ξi = 0) +
∑
ij

µ[ij]E(ξ[ij]11ξj=cj )

is asymptotically

τ ∼
∑
i

µi
1 + (γνi/µi )

ci+1∑ci
i=0(γνi/µi )k

and can be minimized wrt γ.

homogeneous: τ ∼ 2µ
N

c + 1
, Mopt ∼

(
c

2
+

µS

µR

)
N (F-Gast’16).



On going work: other tractable models

Product-form and equivalence of ensembles for

▶ car reservation (a first model for free-floating car-sharing )
(F-Popescu et al.’21, F-Mohamed+24)
(truncated geom ← truncated sum Poisson & geom)

Product-form for

▶ our new model for free-floating car-sharing
Jackson with two classes of customers:
▶ internal (shared cars)
▶ external (private cars)

car-sharing in a fast-varying random environment
(mean-field F-Mohamed-Rigonat’24)

▶ bike/e-bike system (Velib’ now)

No product-form for

▶ parking space reservation (Autolib’):
⇐⇒ Jackson Network blocking policy+non-reversible routing.



Conclusion and future work

▶ a direct approach for the large stationary behavior when
product-form

▶ a probabilistic proof
▶ to prove equivalence of ensembles in such complex frameworks

▶ our model with random enviromment (free-floating car-sharing)
scaling ?

▶ bike/e-bike system
to prove Local Limit Theorem in dimension 2?



Thank you for your attention!



Local Limit Theorem

Let (ηl ,N)1≤l≤N be independent Z-valued r.v. and

SN =
N∑
l=1

ηl ,N , aN = E(SN) and b2N = VarSN .

Assume
1. limN bN = +∞,
2. ∃δ > 0,

∑N
l=1 E(|ηl ,N −ml ,N |2+δ) = o(b2+δ

N ) as N →∞,
3.
∃Φ ∈ L1(R), ∀N ≥ 1, t ∈ [−π, π],E(|ηl ,N −ml ,N |2+δ) ≤ Φ(bNt).
then

lim
N→∞

sup
k∈Z

[
bN
√
2πP(SN = k)− exp(−(k − aN)

2

b2N
)

]
= 0.


