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» Motivation
> Model and analysis
» On-going work

based on two papers:
F-Tibi (AAP'18) and F-Mohamed (Arxiv'+24).



Motivation: large bike/car sharing systems

Flex Communauto
Montreal

Autolib’

Bike/car-sharing networks
» M bikes/cars
» |V stations

> users take a bike/car at any station, make a trip to another
station then return it there.

Two types of failures
no bike/car= rejection, no parking space



There is an imbalance

saturated well-balanced

Inhomogeneity Inevitable: popular stations = popular destinations

Aim of the work: probability of failures
- no bike/car

- no parking space



First models: with product-form

» unlimited capacity
(Fayolle-Lasgouttes'96; George-Xia'10)



First models: with product-form

» unlimited capacity

(Fayolle-Lasgouttes'96; George-Xia'10)
- No blocking of bikes/cars (parking is always possible)
- but rejection of users (empty stations)

Assume:
- Poisson p.p () of user arivals at station i
- trip from station / to destination j with probability g;;

with @ Markovian irreducible with invariant vector v

- trip duration from i to j exp(;j)
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The underlying closed Jackson network

Forget the users. Look only at bikes. Bikes are:
- alternatively at stations and routes
- wait on a line at station: one-server mechanism
- simultaneously handled at routes: infinite-server mechanism

= bikes = customers in a closed Jackson network with two types
of nodes

- N one-server nodes : stations /
- N2 infinite-server nodes : routes [ij]

= Product-form invariant measure.



Our work: finite capacity stations

1. Modeling
- propose finite capacity Jackson networks for bike systems
- having product-form invariant measure
2. Analysis
- at stationarity , in the large network limit (M, N — o0)
- prove asymptotic independence, with explicit marginals

- by proving the equivalence of ensembles



Equivalence of ensembles
Consider a product-form probability measure
N

m(x) =P(& =x1,....én = H b1(x1)

=1

on non-product state-space

N
S = {X € NN,ZX/ =M, x; < ¢qif¢g< —|—OO}
=1
where 1 < ¢; < +00 and Z the normalizing constant.



Equivalence of ensembles
Consider a product-form probability measure

N
m(x) =P(&1 = x1, ..., &N H¢,(x,
=1
on non-product state-space

N
S = {X € NN,ZX/ =M, x; < ¢qif¢g< —|—OO}
=1
where 1 < ¢; < +00 and Z the normalizing constant.
Then for any v > 0,

N N
1 -
400 nyx’gb/(x/) =P(n] = x1,...1m5 = xw| 27/7 = M)
7= =1
where 7], ..., n} are independent r.v. with distributions

1

P(W =x) = m

Yoi(x), xi < ¢if g < 4oo.



Equivalence of ensembles

- Fixed k-dimensional marginal of 7 is
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- Choose v (unique) such that E (Z;\Izl 7}7) =M.



Equivalence of ensembles

- Fixed k-dimensional marginal of 7 is

N
P(flle,...,szxk):P(niy:xl,...nZ:xk]Zn, =M
=1

PO ] =M =321 x)
(Z/ 1 77/ = M)

=P(n] =x1,...1m] = xx)
- Choose 7 (unique) such that E (Z;\Izl 7}7) =M.

- Prove Local limit Theorem for independent non i.d. variables.



- If N, M — oo with, for b3, = Var(n]) + ...+ Var(n}),
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p(én,zm> (Zn,—/\// Zm) (byv2r)

I=k+1

Hence P(§1 = X1,... ,fk == Xk) NP(’OY = X1y ,T)Z :Xk).
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Hence P(§1 = X1,... ,gk == Xk) ~ P(’n'ly = X1y ,T)Z = Xk).
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- If N, M — oo with, for b3, = Var(n]) + ...+ Var(n}),
by — oo and SV E () — E(m))) = o(b3) then

P(én,:/\/l> (Zn,—l\/l Zx,) (byv2m) .

I=k+1

Hence P(fl = X1,... ,fk == Xk) ~ P(’n'ly = X1y ,T)Z = Xk).
Moreover Z ~ v~ M(by+/271) 1 H;V:l Zi(7).
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> When station j is saturated,
bike at end of route [ij] takes route [jk| with probability gj..



Bike-sharing model with finite capacity

» Station / has parking capacity ¢; < +0o0
» Same dynamics as before, but
> When station j is saturated,
bike at end of route [ij] takes route [jk| with probability gj..
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Bike-sharing model with finite capacity

» Station / has parking capacity ¢; < +0o0
» Same dynamics as before, but
> When station j is saturated,
bike at end of route [ij] takes route [jk| with probability gj..
Theorem (Product-form, F-Tibi'18)
Stationary distribution (for node states):

v 1]
? H Vi) i) H ( lqu/ﬂ[u )
=1 ijen 00
on space S = {x € NNJFNZ,E,-X,- + 22X = M, and x; < ci}.

Proof: Special case of blocking and rerouting policy
(Quadrat-Viot'80, Economou-Fakinos'98)



Bike-sharing model with finite capacity

Theorem (Large system, F-Tibi'18)

Assume N, M — oo, M/N — cst, ¢; uniformly bounded,

Hiy [jj = O(l) and Vi = O(l/N)

Then a finite number of stations and routes are asymptotically
independent with limiting distributions

» geom( yvi/ui, c;) for station i
» Poisson (yviqji/ 1)) for route [ij]

where = solves

Z E(geom(yv;i/ i, i)+ Z Y(viqii/ i) = M.

y

Proof: proving Local Limit Theorem for mixed truncated geometric
and Poisson variables.
Remark: In a one-route version: independence only for stations .



Performance

Assuming known parameters c;, 17, 1, qjj (thus v;),
choose M <= choose 7.

Optimize a performance parameter.
Example: total rate of rejection+blocking

7= uiP(& =0)+ Y p B Le=c)
i i

is asymptotically

1+ 1 CI+1
TNZ CI’Y i/ 1)
Z ’YV:/M/)

and can be minimized wrt .

N
homogeneous: 7 ~ ZMm, Mopt ~ (; + ZZ) N (F-Gast'16).



On going work: other tractable models

Product-form and equivalence of ensembles for

> car reservation (a first model for free-floating car-sharing )
(F-Popescu et al."”21, F-Mohamed-+24)
(truncated geom < truncated sum Poisson & geom)
Product-form for

» our new model for free-floating car-sharing
Jackson with two classes of customers:

> internal (shared cars)
> external (private cars)

car-sharing in a fast-varying random environment
(mean-field F-Mohamed-Rigonat'24)

» bike/e-bike system (Velib' now)
No product-form for

» parking space reservation (Autolib’):
<= Jackson Network blocking policy4non-reversible routing.



Conclusion and future work

» a direct approach for the large stationary behavior when
product-form

» a probabilistic proof

P to prove equivalence of ensembles in such complex frameworks

» our model with random enviromment (free-floating car-sharing)
scaling 7

> bike/e-bike system
to prove Local Limit Theorem in dimension 27



Thank you for your attention!



Local Limit Theorem

Let (1, n)1</<n be independent Z-valued r.v. and

N
Sy = an,m ay = E(Sy) and b3 = VarSy.
=1

Assume

1. limpy by = +00,

2. 36> 0, E(jmn — minf>t0) = o(b30) as N — oo,

3.

=[ONS Ll(R),VN >1,te [—W,W],E(M/’N — m/VN]2+5) < (b(b/\/t).
then

. (k — aN)2
lim sup |byV27P(Sy = k) — exp(——5——

=0.
N—oo ke7, bI2V )



