INDUSTRIAL IOT IN 5G NETWORKS AND BEYOND: FROM URLLC TO HAPTIC COMMUNICATIONS

Salah El Ayoubi

Professor at CentraleSupélec – Université Paris Saclay

Head of ILOCOS research team, Laboratory of Signals and Systems (Information, Learning, Optimization and COmmunication Sciences)

Holder of the Sustainable 6G chair funded by Orange

[salaheddine.elayoubi@centralesupelec.fr](mailto:Salaheddine.elayoubi@centralesupelec.fr)

13ème atelier en évaluation des performances – IRIT– December 2024

Industrial IoT in 5G/6G ²

- **IoT networks allow more than low rate sensor connectivity**
- **Applications requiring reliability belong to the IIoT (Industrial IoT) world:**
	- machines communicating in a factory,
	- tele-operation of drones, etc.
- **5G URLLC service intends to serve IIoT:**
	- 1 ms latency, 99.999% reliability
- **6G networks aim to bridge the physical, digital and human worlds:**
	- 0.1ms latency, 99.99999% reliability??
- **Objective of this talk:**
	- See how these targets can be achieved
	- explore a more sustainable, approach
	- 6G focus: haptic service for real-time control

Outline ³

• **Network optimization for URLLC**

- Resource dimensioning by queuing theoretical models
- URLLC evolution with 6G

• **From URLLC to haptic communications**

- Tactile Internet with haptic feedback
- Joint control and communications

Outline ⁴

• **Network optimization for URLLC**

- Resource dimensioning by queuing theoretical models
- URLLC evolution with 6G
- **From URLLC to haptic communications**
	- Tactile Internet with haptic feedback
	- Joint control and communications

Resource allocation for URLLC traffic

- **Stringent quality of service (QoS) guarantee:**
	- 3GPP target: more than 99,999% of packets correctly received within 1 ms.
- **Focus of the standard: grant-free scheduling, preemption, early decoding** ∞ for ensuring that a packet can be correctly received and decoded within 1 ms.
- **But this does not ensure that the delay requirement is ensured:**
	- ∞ Queuing delay should be modeled.

Centralized scheduling approach (downlink)

Arrivals: Continuous-time

Objective: ensure that the probability of delay exceeding threshold is low

⁸ Formulating the outage probability

- *U* **users, probability** *f* **of generating a packet in a given slot**
- **Users have different radio conditions, and different spectral efficiencies:**
	- With probability *βk*, a packet consumes *α^k* resources
- **Number of resources requested by packets generated in slot** *i***:**

$$
a(i) = \sum_{u=1}^{U} X_{u,i} \quad \text{, with} \quad X_{u,i} = \begin{cases} 0, & \text{with prob. } (1-f) \\ \alpha_k & \text{with prob. } f\beta_k \end{cases}
$$

• **Define the overflow at time slot** *i* **as the amount of resource demands that cannot be satisfied in the slot, and must be queued:**

$$
B(i) = (a(i) + B(i - 1) - R)^{+}
$$

• **Outage: current overflow cannot be served in the next (δ-1) slots:**

$$
O = \lim_{i \to \infty} Pr[B(i) > (\delta - 1)R]
$$

Queuing model ⁹ – M/D/C equivalent in discrete time

• **Example: packet of size** *s***, belongs to a user whose MCS** efficiency is e bit/s/Hz, time slot of τ milliseconds, RB of w Hz:

– one packet occupies $r=\left|\frac{s}{e\tau}\right|$ $e\tau\omega$ Resource Blocks

• **If there are** *R* **RBs at the base station, each slot can serve:**

-
$$
C = \left| \frac{R}{\sqrt{\frac{s}{e\tau \omega}}} \right|
$$
 packets

- For Poisson arrivals with intensity λ packets/slot, the **equivalent continuous time queue model is M/D/C:**
	- Efficient algorithms known for computing steady-state (Tjims, 2003).
- **Two drawbacks:**
	- The modulation scheme depends on the radio conditions, and there is a mix of modulations over the cell: M/D/C where *C* varies with time depending on radio conditions (efficiencies *e*)
	- The system is discrete time, as service is done slot per slot.

¹⁰ A discrete-time low complexity queuing model

- **We developed a discrete-time queuing model for the system:**
	- q_b is the probability that the queue length is equal to *b* (RBs)
	- Let z_i be the limiting probability that new packets request $a(t) = i$ RBs
	- The transition matrix for the system is derived by:

$$
Q_{jb} = \begin{cases} z_{b+R-j}, & \text{if } b \in]0, B_{max}| \\ \sum_{i \ge b+R-j} z_i, & \text{if } b = B_{max} \\ \sum_{i \le R-j} z_i, & \text{if } b = 0 \\ 0, & \text{otherwise} \end{cases}
$$

• **Theorem: For binomial and Poisson arrivals, the equilibrium probabilities exhibit the geometric tail behavior:**

$$
q_j \sim \gamma \eta^j \ \ as \ \ j \to \infty
$$

for some constant *γ > 0* **and** *0 < η < 1***. For sufficiently large M:**

$$
q_j=q_M\eta^{j-M},\ \ j\ge M.
$$

¹¹ Results: outage probability

• **Network optimization for URLLC**

- Resource dimensioning by queuing theoretical models
- URLLC evolution with 6G
- **From URLLC to haptic communications**
	- Tactile Internet with haptic feedback
	- Joint control and communications

¹³ Extreme URLLC for 6G

- **URLLC becomes xURLLC for extreme URLLC**
- **0.1 ms latency target**
- *10-6* **to** *10-8* **loss rate**
- **No waiting**
- **No queuing**
- **One-shot transmission**

- **Optimization under chance constraint:**
	- Minimize *R*
	- $-$ s.t. $Pr[\sum_{u=1}^{U} X_u > R] < \varepsilon$
- *Xu* **is the amount of resources requested by user** *u* **at a given slot**
	- i.i.d. random variables

$$
\Pr\left[\sum_{u=1}^{U} X_u > R\right] < \varepsilon
$$

- **Simplest approach: use Bienaymé- Chebychev bound**
- **Step 1: compute the moments for the amount of packets generated by a single user in a slot** *i***:** $E[V] = F \sum_{\alpha} \alpha$

$$
X_{u,i} = \begin{cases} 0, & \text{with prob. } (1-f) \\ \alpha_k & \text{with prob. } f\beta_k \end{cases} \qquad \qquad \overbrace{\phantom{X_{u,i}}}\qquad \qquad \overbrace{\
$$

• **Step 2: compute the moments of the accumulated traffic:**

$$
\hat{\sigma} = \sqrt{U}\sigma_0, \hat{\mu} = U\mu_0
$$

• **Apply the Bienaymé- Chebychev bound:**

•
$$
\Pr\left[\sum_{u=1}^{U} X_u > \hat{\sigma} s\right] < \frac{1}{s^2} \quad \text{with} \quad s = \frac{R - U\mu_0}{\hat{\sigma}}
$$

$$
\Pr\left[\sum_{u=1}^{U} X_u > R\right] < \varepsilon
$$

- **Bienaymé- Chebychev bound is known to be loose**
- **Idea: exploit the fact that the accumulated traffic is the sum of independent random variables**
- **Some works propose tighter bounds in this case:**
	- Bernstein, S.: Theory of probability. Moscow. MR0169758 (1927)
	- Bennett, G.: Probability inequalities for the sum of independent random variables. Journal of the American Statistical Association 57(297), 33–45 (1962)
- **In summary: for independent random variables** *xu* **bounded by a value M:**

 $Pr(\sum_{u=1}^{U} x_u > s\sigma) \leq \exp\left[-\frac{s^2}{2 + \frac{2}{3}\frac{M}{\sigma}s}\right]$ – Bernstein: - Bennet: $Pr(\sum_{u=1}^{U} x_u > s\sigma) \le \exp\left[-\frac{s^2}{1 + \frac{1}{3}\frac{M}{\sigma}s + \sqrt{1 + \frac{2}{3}\frac{M}{\sigma}s}}\right]$

¹⁶ Performance results (Binomial arrivals)

- **5G network optimization for URLLC**
	- Resource dimensioning by queuing theoretical models
	- URLLC evolution with 6G

• **From URLLC to haptic communications**

- Tactile Internet with haptic feedback
- Joint control and communications

- **Back to the starting point: we solved a problem defined by 3GPP, the organism that standardizes 4G/5G and 6G…**
	- the **proportion** of packets,
	- **correctly received** by the controller
	- within the **delay budget** (e.g. 1 ms for 5G, 0.1 ms for 6G)
	- has to be larger than a **reliabilty target** (e.g. loss probability < 10-5, or 10^{-7} for 6G)
- **But why 1ms? or 0.1ms?**
- **Is it only a matter of delay, or throughput also matters?**
- **What happens if some packets are lost? Can the application compensate for it?**

Remote control with haptic feedback: a challenging use case 19

• **Remote control with haptic feedback over wireless networks**

A human controlling a machine Example: remote surgery

A cloud-based virtual remote touch Example: commercial product examination

- **Needs URLLC-like**: errors and delays may have safety impacts
- **May be multi-modal**: haptic, but also visual and audio
- **Should be optimized**: continuously sending packets may be too energy and resource consuming

Modeling axis 1: JND-based codec and consecutive losses 20

- **Just-Noticeable Difference (JND) codec is standardized:**
	- JND is the minimum amount of change in stimulus intensity needed for a perceptible increment in sensory experience
- **JND codecs are generally associated with predictors**

- the predictor is able to compensate some losses
- what is really annoying is **consecutive losses**
- **No need for 0.1 ms and 10-7 loss probability.**

• **Ongoing work:**

- incorporate the JND codec into the queuing model and compute the consecutive losses as a performance indicator
- Develop adapted network control schemes

Modeling axis 2: multi-modal haptic-visual communications 21

- **Haptic communications are usually coupled with visual flows:**
	- The brain merges optimally the two flows*

$$
\gamma_{n,12}^{-2}=(1-\eta_{n,1})^{-2}+(1-\eta_{n,2})^{-2}
$$

- γ is the JND
- η_1 the haptic loss, η_2 the visual loss

• **Optimal joint resource allocation:**

maximize $\alpha R_2 + (1 - \alpha)(C_E - \lambda_E)$ R_1 Haptic throughput of metaverse user. w_i, η_i R_2 Visual throughput of metaverse user. $R_1=\hat{R}_1$ s.t \hat{R}_1 Required haptic throughput. $R_2 \geq \hat{R}_2$ \hat{R}_2 Minimal visual throughput. $0 < \gamma_{12} < \hat{\gamma}_{12}$ γ_{12} JND of metaverse user. $\hat{\gamma}_{12}$ Maximal JND. $0 < \hat{\eta}_2 < \eta_2 < \eta_1 < 1$ $\hat{\eta}_2$ Minimal visual decoding success probability. $\frac{\lambda_E}{C_E} < 1$ λ_E eMBB users traffic. C_E Cell capacity for eMBB users.

VR space **Visuo-haptic** perception Frequency Metaver Physical space user

**Ernst, Marc O., and Martin S. Banks. "Humans integrate visual and haptic information in a statistically optimal fashion." Nature, 2002.*

- **5G network optimization for URLLC**
	- Resource dimensioning by queuing theoretical models
	- URLLC evolution with 6G

• **From URLLC to haptic communications**

- Tactile Internet with haptic feedback
- Joint control and communications: work within Doctoral Network TOAST

²³ Age of Information based control

- **Define a switching policy, ζ(t) = 1 or ζ(t) = 0, between local (safe) mode and haptic-based human control**
	- when there is a burst of packet losses, the classical Hold The Last Sample (HLS) technique may lead to safety issues.
- **Age of Information (AoI)-based control**
- **We model the closed loop system as a Markov jump linear system (MJLS)**

$$
\mathcal{G}_{AoI}: \chi(t+1)=\mathcal{A}_{\hat{\theta}(t)}\chi(t)+\mathcal{B}_{\hat{\theta}(t)}
$$

- $\gamma(t)$ is the state at time *t*: (state of the plant and controller, command sent and received, haptic feedback)
- $\hat{\theta}(t)$ is the AoI at time *t*, for both links
- $\mathcal A$ and $\mathcal B$ are matrices describing the dynamics of the system, under the AoI and the associated control policy.

Conclusion 25

• **URLLC service is an essential enabler for several industrial applications**

- It is a costly service in terms of resources and should be carefully designed
- Queuing theoretical models should be revisited with focus on discrete time packet level models
- **The adopted approach by 3GPP is not sufficient for integrating industrial and Metaverse applications in 6G**
	- Inconvenient: Too energy and resource costly for ensuring the same stringent requirements for all services
- **Proposed approach: within the global framework of Goal-oriented communications**
	- Difficulty: Each application has its own goal and you need to delve into the control system
	- Competencies: optimal control, signal processing, image processing, etc.
- **Example for haptic communications:**
	- New shape of traffic: JND-based codec, multi-modal flows
	- New metrics for performance: consecutive packet losses, safety of the controller
	- Ongoing works: joint design of the controller and the network for ensuring safety and efficiency

Many ²⁶ thanks to my co-authors on this topic

• **From Orange:**

– Antonia Masucci

• **From Telecom SudParis**

– Tijani Chahed

• **From CentraleSupelec:**

– Richard Combes, Abdel Lisser

• **From CNRS:**

– Vineeth Varma

• **Current PhD students:**

- Mohammed Abdullah, Jorge Mirande, Marc Pierre, Yu Yeh
- **Former PhD students**
	- Abdellatif Chagdali, Nathalie Naddeh, Tiago Rochas Goncalves

• **On queuing models for URLLC:**

- S. E. Elayoubi, N. Naddeh, S. Ben Jemaa and T. Chahed, "A Large Deviations Model for Latency Outage for URLLC," in **Valuetools** 2022, November 2022.
- A. Chagdali, S. E. Elayoubi, A. Masucci and A. Simonian, On the design and performance of scheduling policies exploiting spatial diversity for URLLC, **Computer Communications**, Elsevier, 2023.
- M. Abdullah, S. E. Elayoubi, T. Chahed and A. Lisser, "Performance modeling and dimensioning of latencycritical traffic in 5G networks," in **IEEE Globecom**, December 2023.
- M. Abdullah, S. E. Elayoubi, T. Chahed and A. Lisser, "Radio Resource Allocation for Extreme URLLC Under Partial Knowledge of Arrival Distributions," in **IEEE PIMRC**, September 2024.
- M. Abdullah, S. E. Elayoubi and T. Chahed, "Efficient queue control policies for latency-critical traffic in mobile networks," in **IEEE Transactions on Network and Service Management**, 2024.
- S. E. Elayoubi, M. ElHassan and A. Masucci, Optimal multi-connectivity strategies for delay-sensitive industrial IoT traffic, **IEEE Globecom**, Cape Town, December 2024.

• **On haptic communications**

- Y. Yeh, V. Varma and S. E. Elayoubi, "AoI-based switching control for safe haptic teleoperation over a wireless network ," in **IEEE CDC**, December 2024.
- M. Abdullah, S. E. Elayoubi and T. Chahed, "Network control for ensuring haptic service performance in 5G/6G networks," Preprint available on HAL, 2024.
- J. Mirande T. Chahed and S. E. Elayoubi, "Optimal resource allocation for the transport of multi-modal visualhaptic metaverse flows in 5G," Preprint available on HAL, 2024.
- **On goal-oriented communications and joint control/communications**
	- T. Rochas, V. Varma and S. E. Elayoubi, "Relay-assisted platooning in wireless networks: a joint communication and control approach," in **IEEE Transactions on Vehicular Technology**, 2023.
	- T. Rochas, R. Cunha, V. Varma and S. E. Elayoubi, "Fuel-efficient switching control for platooning systems with a deep reinforcement learning approach," **IEEE Transactions on Intelligent Transportation Systems**, 2023.

