

13ème Atelier en Évaluation des Performances

Deep Q-Learning with Whittle Index

for Contextual Restless Multi-Armed Bandits

Presented by PhD student Ibtihal EL MIMOUNI

PhD supervised by

Dr Konstantin AVRACHENKOV & Mr Hervé BAILE

Tuesday, December 3rd 2024

INTRODUCTION MACHINE LEARNING

Predictive Machine Learning (ML) Reinforcement Learning (RL)

Environment

Agent

INTRODUCTION REINFORCEMENT LEARNING

INTRODUCTION MULTI-ARMED BANDIT (MAB)

- **Multi-Armed:** Multiple options that an algorithm can choose from. Each option is like a **lever** or **arm** that can be pulled.
- **Bandit:** Analogy of casinos where there are multiple slot machines and the gambler has to decide which machine to play.

MULTI-ARMED BANDIT EXPLORATION-EXPLOITATION TRADE-OFF

The agent **explores** different arms to see which ones yield the best reward.

The agent **exploits** the arms that have yielded the best rewards.

MULTI-ARMED BANDIT OVERVIEW

MULTI-ARMED BANDIT OVERVIEW

MULTI-ARMED BANDITS OVERVIEW

CONTEXTUAL MULTI-ARMED BANDITS ADDING CONTEXT

CONTEXTUAL MULTI-ARMED BANDITS EXAMPLE: LinUCB

RESTLESS MULTI-ARMED BANDITS RESTLESS ARMS

RESTLESS MULTI-ARMED BANDITS MARKOVIAN BANDITS

• Restless Multi-Armed Bandits (or Restless Bandits) evolve independently in a controlled Markov manner, i.e. we have:

$$
\begin{aligned} \bm{P}(\bm{s}_{t+1}|\bm{s}_{t},\bm{a}_{t}) := \mathbb{P}\left(\bm{S}_{t+1}=\bm{s}_{t+1}|\bm{S}_{0:t}=\bm{s}_{0:t},\bm{A}_{0:t}=\bm{a}_{0:t}\right) \\ = \prod_{i=1}^{n}\mathbb{P}\left(S_{t+1}^{i} = s_{t+1}^{i} | S_{t}^{i} = s_{t}^{i}, A_{t}^{i} = a_{t}^{i}\right) \end{aligned}
$$

• $S_t \coloneqq (S^1_t, \ldots S^n)$ \mathcal{A}_t) and $\mathcal{A}_t = (\mathcal{A}^1_{t}, \ldots, \mathcal{A}^n_{t})$ denote the joint state and actions at time t.

RESTLESS MULTI-ARMED BANDITS A MARKOV DECISION PROCESS

• The state of **each arm** evolves according to a Markovian transition, even when the arm is not played.

RESTLESS BANDITS FORMULATION

- A Restless Multi-Armed Bandit (RMAB) is defined by the controlled Markov processes $MDP = (S, A, R, P)$, such that:
	- $S = \{1, 2, ..., |S|\}$ is the state space, where s_i is the state of arm i.
	- $A = \{0, 1\}$ denotes the actions space with two actions: $a_i = 1$ to activate arm *i*, and $a_i = 0$ to keep arm *i* passive.
	- $r_i^t = R(s_i^t, a_i^t, s_i^t)$ is the reward function.
	- $P(s_i^{t+1} | s_i^t, a_i^t)$ denotes the transition probability from state s_i^t to state s_i^{t+1} .

RESTLESS BANDITS OBJECTIVE

• Find a policy $\pi = (\pi_1, ..., \pi_N)$ which maximizes the expected discounted reward i.e. π such that:

$$
\text{maximize } \mathbb{E}_{s_0^{(i)} \sim \mu^{(i)}, a_t^{(i)} \sim \pi^{(i)}(s_t^{(i)}), s_{t+1} \sim p^{(i)}(\cdot | s_t^{(i)}, a_t^{(i)})} \left[\sum_{t=0}^{\infty} \sum_{i=1}^N \gamma^t r^{(i)}(s_t^{(i)}, a_t^{(i)}) \right]
$$

subject to the following hard constraint ∀t:

$$
\sum_{i=1}^{N} a_t^{(i)} = M
$$

RESTLESS BANDITS OBJECTIVE

• Find a policy $\pi = (\pi_1, ..., \pi_N)$ which maximizes the expected discounted reward i.e. π such that:

$$
\text{maximize } \mathbb{E}_{s_0^{(i)} \sim \mu^{(i)}, a_t^{(i)} \sim \pi^{(i)}(s_t^{(i)}), s_{t+1} \sim p^{(i)}(\cdot | s_t^{(i)}, a_t^{(i)})} \left[\sum_{t=0}^{\infty} \sum_{i=1}^N \gamma^t r^{(i)}(s_t^{(i)}, a_t^{(i)}) \right]
$$

subject to the following relaxed constraint ∶

$$
\mathbb{E}_{a_t^{(i)}\sim\pi^{(i)}(s_t^{(i)})}\left[\sum_{t=0}^{\infty}\sum_{i=1}^N\gamma^t a_t^{(i)}\right] = \frac{M}{1-\gamma}
$$

WHITTLE INDEX THREE OPTIMIZATION PROBLEMS

• **[Original]** Original problem :

maximize
$$
\mathbb{E}[\sum_{t=0}^{\infty} \sum_{i=1}^{N} \gamma^t r^{(i)}(s_t^{(i)}, a_t^{(i)})]
$$

s.t. $\sum_{i=1}^{N} a_t^{(i)} = M$, $\forall t$

- **[Relaxed]** Problem with Relaxed activation constraint :
- $\sum_{t=0}^{\infty}\sum_{i=1}^{N}\gamma^{t} a_{t}^{(i)}=\frac{M}{1-\gamma}$

• **[Lagrange]** Introducing Lagrange Multiplier :

$$
\text{maximize } \mathbb{E}\left[\sum_{t=0}^{\infty}\sum_{i=1}^{N}\gamma^{t}\left(r^{(i)}\left(s^{(i)}_t, a^{(i)}_t\right) + \tilde{\lambda}\left(1 - a^{(i)}_t\right)\right)\right]
$$

WHITTLE INDEX THREE OPTIMIZATION PROBLEMS

• **[Original]** Original problem :

$$
\begin{aligned}\n\text{maximize } \mathbb{E}[\sum_{t=0}^{\infty} \sum_{i=1}^{N} \gamma^{t} r^{(i)}(s_t^{(i)}, a_t^{(i)})] \\
\text{s.t.} \sum_{i=1}^{N} a_t^{(i)} = M, \ \forall t\n\end{aligned}
$$

- **[Relaxed]** Problem with Relaxed activation constraint : $\tilde{\lambda} \times$ $\sum_{i} \sum_{i} \gamma^{t} a_{t}^{(i)} = \frac{1}{1} \frac{1}{1} \times \tilde{\lambda}$
	-
- **[Lagrange]** Introducing Lagrange Multiplier :

$$
\text{maximize } \mathbb{E}\left[\sum_{t=0}^{\infty}\sum_{i=1}^{N}\gamma^{t}\left(r^{(i)}\left(s^{(i)}_t, a^{(i)}_t\right)+\tilde{\lambda}\left(1-a^{(i)}_t\right)\right)\right]
$$

WHITTLE INDEX DECOUPLED PROBLEM

• **[Lagrange]** The function is given by :

$$
\text{maximize } \mathbb{E}\left[\sum_{t=0}^{\infty}\sum_{i=1}^{N}\gamma^{t}\left(r^{(i)}(s_t^{(i)}, a_t^{(i)}) - \tilde{\lambda}\,a_t^{(i)}\right)\right] + \tilde{\lambda}(M/(1-\gamma)) \quad s.t. \quad a_t^{(i)} \in \{0, 1\}, \forall t
$$

• **[Decoupled Problem]** Solving the above for $\tilde{\lambda}$ is equivalent to solving the following for each $i \in [N]$. We can decouple this problem and neglect the last term.

$$
\text{maximize } \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \left(r^{(i)}\left(s_t^{(i)}, a_t^{(i)}\right) - \tilde{\lambda} a_t^{(i)}\right)\right] \quad s.t. \ a_t^{(i)} \in \{0, 1\}, \forall t
$$

WHITTLE INDEX DECOUPLED PROBLEM

• **[Lagrange]** The Lagrange dual function is given by :

$$
\text{maximize } \mathbb{E}\left[\sum_{t=0}^{\infty}\sum_{i=1}^{N}\gamma^{t}\left(r^{(i)}(s_t^{(i)}, a_t^{(i)}) - \tilde{\lambda} a_t^{(i)}\right)\right] + \tilde{\lambda}(M/(1-\gamma)) \quad s.t. \quad a_t^{(i)} \in \{0, 1\}, \forall t
$$
\ncte

• **[Decoupled Problem]** Solving the above for $\tilde{\lambda}$ is equivalent to solving the following for each $i \in [N]$. We can decouple this problem and neglect the last term.

$$
\text{maximize } \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \left(r^{(i)}\left(s_t^{(i)}, a_t^{(i)}\right) - \tilde{\lambda} a_t^{(i)}\right)\right] \quad s.t. \ a_t^{(i)} \in \{0, 1\}, \forall t
$$

WHITTLE INDEX THREE OPTIMIZATION PROBLEMS

• **[Original]** Original problem :

maximize
$$
\mathbb{E}[\sum_{t=0}^{\infty} \sum_{i=1}^{N} \gamma^t r^{(i)}(s_t^{(i)}, a_t^{(i)})]
$$

s.t. $\sum_{i=1}^{N} a_t^{(i)} = M$, $\forall t$

- **[Relaxed]** Problem with Relaxed activation constraint : $\tilde{\lambda} \times \sum_{i=1}^{\infty} \sum_{i=1}^{N} \gamma^{t} a_{t}^{(i)} = \frac{M}{1-\gamma} \times \tilde{\lambda}$
	-

• **[Lagrange]** Introducing Lagrange Multiplier :

$$
\text{maximize } \mathbb{E}\left[\sum_{t=0}^{\infty}\sum_{i=1}^{N}\gamma^{t}\left(r^{(i)}\left(s^{(i)}_{t}, a^{(i)}_{t}\right) + \tilde{\lambda}\left(1 - a^{(i)}_{t}\right)\right)\right]
$$

WHITTLE INDEX SOLVING THE DECOUPLED PROBLEM

$$
\mathbb{E}\left[\sum_{t=0}^{\infty}\sum_{i=1}^{N}\gamma^{t}\left(r^{(i)}\left(s^{(i)}_t, a^{(i)}_t\right) + \tilde{\lambda}\left(1 - a^{(i)}_t\right)\right)\right]
$$

• The solution of the equation above is obtained by combining the solution to N independent problems.

$$
V^{i}(s) = \max_{a \in \{0,1\}} \left[a \left(r^{i}(s,1) + \gamma \cdot \sum_{j} p^{i}(j|s,1)V^{i}(j) \right) + \left(1 - a \right) \left(r^{i}(s,0) + \lambda + \gamma \cdot \sum_{j} p(j,|s,0)V^{i}(j) \right) \right]
$$

• We can rewrite the expression of the equation above as a function of the state-action *Qⁱ (s,a).*

$$
Q^{i}(s,a) = a \left(r^{i}(s,a) + \gamma \cdot \sum_{j} p^{i}(j|s,a)V^{i}(j) \right) + (1-a) \left(r^{i}(s,a) + \lambda + \gamma \cdot \sum_{j} p(j|s,a)V^{i}(j) \right)
$$

SOLVING THE DECOUPLED PROBLEM BELLMAN OPTIMALITY EQUATION

• We have to find Q for each i \in [N] such that the above is satisfied for some $\tilde{\lambda}$.

[Bellman Optimality Equation]

$$
Q^*(s, a) = (1 - a)(r(s, a) + \tilde{\lambda}) + r(s, a) + \sum_{s' \in S} p(s'|s, a) \max_{a' \in \mathcal{A}} Q^*(s', a') \quad \forall (s, a) \in S \times \mathcal{A}
$$

[Q-learning]

$$
Q_{n+1}(s, a) = Q_n(s, a) + \alpha \, \mathbb{I}\{s_n = s, a_n = a\} \Big((1 - a)(r(s, a) + \tilde{\lambda}) + r(s, a) + \max_{a' \in \mathcal{A}} Q_n(s', a') \Big)
$$

SOLVING THE DECOUPLED PROBLEM MINIMUM SUBSIDY

• Rewriting the Bellman optimality equation for active actions 1 and 0 gives:

$$
Q^*(s, 1) = r(s, 1) + \sum_{s' \in S} p(s'|s, a) \max_{a' \in A} Q^*(s', a')
$$

$$
Q^*(s, 0) = r(s, 0) + \tilde{\lambda} + \sum_{s' \in S} p(s'|s, a) \max_{a' \in A} Q^*(s', a')
$$

• Whittle defines the Whittle Index for state \hat{k} to be the value $\lambda(\hat{k})$ of $\tilde{\lambda}$ for which both active and passive actions are equally preferred in state \hat{k} i.e:

$$
Q(\hat{k},1) = Q(\hat{k},0) \text{ for } \tilde{\lambda} = \lambda(\hat{k})
$$

CONTEXTUAL RESTLESS BANDITS OVERVIEW

RESTLESS BANDITS RECALL

- A Restless Multi-Armed Bandit (RMAB) is defined by the controlled Markov processes $MDP = (S, A, R, P)$, such that:
	- $S = \{1, 2, ..., |S|\}$ is the state space, where s_i is the state of arm i.
	- $A = \{0, 1\}$ denotes the actions space with two actions: $a_i = 1$ to activate arm *i*, and $a_i = 0$ to keep arm *i* passive.
	- $r_i^t = R(s_i^t, a_i^t, s_i^t)$ is the reward function.
	- $P(s_i^{t+1} | s_i^t, a_i^t)$ denotes the transition probability from state s_i^t to state s_i^{t+1} .

CONTEXTUAL RESTLESS BANDITS FORMULATION

- A **Contextual** Restless Multi-Armed Bandit **(CRMAB)** is defined by the controlled Markov processes $MDP^c = (S, C, A, R, P)$, such that:
	- $S = \{1, 2, ..., |S|\}$ is the state space, where s_i is the state of arm i.
	- $\mathbf{C} = \{1, 2, ..., |C|\}$, is the context space, where c_i is the context of arm i.
	- $A = \{0, 1\}$ denotes the actions space with two actions: $a_i = 1$ to activate arm *i*, and $a_i = 0$ to keep arm *i* passive.
	- $r_i^t = R(s_i^t, c_i^t, a_i^t)$ is the reward function.
	- $P(s_i^{t+1} | s_i^t, a_i^t, c_i^t)$ denotes the transition probabilities.

CONTEXTUAL RESTLESS BANDITS FORMULATION

- A Contextual Restless Multi-Armed Bandit (CRMAB) is defined by the controlled Markov processes $MDP^c = (S, C, A, R, P)$, such that:
	- $S = \{1, 2, ..., |S|\}$ is the state space, where s_i is the state of arm i.
	- $\mathbf{C} = \{1, 2, ..., |C|\}$, is the context space, where c_i is the context of arm i.
	- $A = \{0, 1\}$ denotes the actions space with two actions: $a_i = 1$ to activate arm *i*, and $a_i = 0$ to keep arm *i* passive.
	- $r_i^t = R(s_i^t, c_i^t, a_i^t)$ is the reward function.
	- $P(s_i^{t+1} | s_i^t, a_i^t, c_i^t)$ denotes the transition probabilities

CONTEXTUAL RESTLESS BANDITS OBJECTIVE

• Find a policy $\pi = (\pi_1, ..., \pi_N)$ which maximizes the expected discounted reward i.e. π such that:

$$
\text{maximize } \mathbb{E}\left[\sum_{t=0}^{\infty}\sum_{i=1}^{N}\gamma^{t}r^{(i)}(s^{(i)}_t,c^{(i)}_t,a^{(i)}_t)\right]
$$

• Emerging topic, only two works on CRMAB:

[1] X. Chen, I. Hou. "Contextual Restless Multi-Armed Bandits with Application to Demand Response Decision-Making". In: arXiv preprint arXiv:2403.15640 **(2024)**

[2] B. Liang, L. Xu, A. Taneja, M. Tambe, and L. Janson. "A Bayesian Approach to Online Learning for Contextual Restless Bandits with Applications to Public Health". In: arXiv preprint arXiv:2402.04933 **(2024)**

ALGORITHM OVERVIEW

- Deep Q-learning the Whittle Index with Context (DQWIC).
- Combines **deep RL** and **Whittle index** theory within the CRMAB framework.
- Leverages **two Neural Networks (NN).**
	- Q-network for approximating action-value functions,
	- Whittle-network for estimating Whittle indices.
- The learning process occurs through a **two time scale stochastic approximation.**

DQWIC PSEUDOCODE

Algorithm: Deep Q-learning Whittle Index with Context (DQWIC)

DQWIC PSEUDOCODE

Parameter initialization

- Q-network params θ
- Whittle network params δ
- Replay memory D

1

- Exploration param ϵ
- Discount factor γ
- State s and context c

Algorithm: Deep Q-learning Whittle Index with Context (DQWIC)

Initialize: Q-network parameters θ , Whittle network parameters δ , target network parameters θ^{tg} , replay memory D, and hyperparameters ϵ, γ . 1: Get initial state s and context c

2: for each time step t do

if Uniform $[0,1] < \epsilon$ then

Explore by selecting M random arms

else

 $3:$

 $4:$ $5:$

 $6:$ $7:$

 $8:$

 $9:$

 $10:$

 $11:$

 $12:$

 $13:$

 $14:$

 $16:$

 $17:$

 $18:$

 $19:$

Exploit by selecting top M arms with the highest Whittle indices end if

Execute action a, observe context c, next state s' and reward r Store transitions (s, c, a, r, s') in replay memory D

if $|\mathcal{D}|$ > batch size then

/* On a faster time scale $*/$ Sample mini-batch of transitions from D

Compute Q^{target}

Compute loss: $\mathcal{L}(\theta)$

- Update Q-network parameters θ $15:$
	- /* On a slower time scale $*/$
	- Sample batch of (k, c) from D
	- Compute loss: $\mathcal{E}(\delta)$
	- Update Whittle network parameters δ
- end if $20:$
- Update target network parameters $\theta^{tg} \leftarrow \theta$ $21:$

22: end for

2

Parameter initialization

Selection of *M* arms

- Epsilon-greedy:
	- Explore with ϵ
	- Exploit with 1ϵ
- Observe transitions and store them in replay memory *D*

Algorithm: Deep Q-learning Whittle Index with Context (DQWIC)

Initialize: Q-network parameters θ , Whittle network parameters δ , target network parameters θ^{tg} , replay memory D, and hyperparameters ϵ, γ . 1: Get initial state s and context c

2: for each time step t do

if Uniform $[0, 1] < \epsilon$ then

Explore by selecting M random arms

else

 $3:$

 $4:$

 $5:$ $6:$

 $7:$

8: 9:

 $10:$

 $11:$ $12:$

 $13:$

 $14:$

 $15:$

 $16:$

 $17:$

 $18:$

 $19:$

Exploit by selecting top M arms with the highest Whittle indices end if

Execute action a, observe context c, next state s' and reward r Store transitions (s, c, a, r, s') in replay memory D

if $|\mathcal{D}|$ > batch size then

- /* On a faster time scale $*/$ Sample mini-batch of transitions from D
- Compute Q^{target}

Compute loss: $\mathcal{L}(\theta)$

- Update Q-network parameters θ
	- /* On a slower time scale $*/$
- Sample batch of (k, c) from D
- Compute loss: $\mathcal{E}(\delta)$
- Update Whittle network parameters δ
- end if $20:$
- Update target network parameters $\theta^{tg} \leftarrow \theta$ $21:$
- $22:$ end for

- On a fast time scale, sample a batch (which contains $[s, c, a, r, s']$) of size B from the memory D.
- The Q-network computes the predicted Q-values for all possible actions as follows:

$$
Q^{\text{target}}(s_t, a_t, \lambda_{\delta}, c_t) = (1 - a_t)(r_0(s_t) + \lambda_{\delta}) + a_t r_1(s_t) + \gamma \max_{a \in \{0, 1\}} Q^{\theta_{tg}}(s'_t, a, \lambda_{\delta}, c_t)
$$

- Target network is a copy of the Q-network.
- $\max_{a\in\{0,1\}}Q^{\nu_{tg}}(s'_t,a,\lambda_\delta,c_t)$ is the maximum Q-value for the next state s'_+ over all ′ possible actions, predicted by the target network parameters θ^{tg} .

DQWIC PARAMETER UPDATE

- The Q-network parameters θ are updated by minimizing the Mean Squared Error (MSE) between the predicted Q-values and the target Q-values.
- The loss function is defined as:

$$
\mathcal{L}(\theta) := \mathbb{E}\left[\left\|Q_{\theta}(s, a, \lambda_s, c) - Q^{\text{target}}(s, a, \lambda_s, c)\right\|^2\right]
$$

- The parameters θ of the Q-network are updated using backpropagation to minimize this loss.
- The parameters of the target network θ^{tg} are periodically synchronized with those of the Q-network θ , for instance every 100 iterations, to stabilize training.

DQWIC E NETWORK

• On a slow time scale, a batch of reference states k and contexts c are sampled from the replay memory D. These samples are used to compute the MSE loss function E (δ) based on the difference between the Q-values for the active and passive actions.

$$
\mathcal{E}(\delta) = \mathbb{E}\left[\left\|Q_{\theta}(k,1,\lambda_s,c) - Q_{\theta}(k,0,\lambda_s,c)\right\|^2\right]
$$

• The parameters δ of the Whittle network are updated using gradient descent to minimize the loss $E(\delta)$.

APPLICATION RECOMMENDER SYSTEMS

- A Recommender System (RS) is:
	- an information filtering system
	- suggests items to users based on their past preferences or behavior.
	- used in many domains such as in: e-commerce, entertainment, and social media, etc.
- Let $R(u, j)$ represent the interaction between user u and item j . This could be:
	- **Explicit:** Ratings (e.g., $R(u, j) \in \{1, 2, ..., 5\}$).
	- **Implicit:** Binary clicks or preferences (e.g., $R(u, j) \in \{0, 1\}$).

RECOMMENDER SYSTEM EXAMPLES

Because you watched this show ... | Customers like you also bought ... | Videos recommended for you ...

See what's popular now \ldots Recommended articles for you \ldots Items similar to your purchase \ldots

arch Engines Celebrate Earth Day engine asks: 'How will you celebrate Earth Day?' which links people to news y Doodles Get Google Animated in 2011 Sea

DECATHLON

EMAIL RECOMMENDER SYSTEM MOTIVATION

- Sending mass emails results in suboptimal performance:
	- bad domain reputation with potential **spamming**,
	- overwhelming recipients with irrelevant content,
	- decreasing user engagement,
	- negative **user experience**.

~ 46 % of emails are spams (2023)

CONTEXTUAL RESTLESS BANDITS EMAIL RS

CONTEXTUAL RESTLESS BANDITS EMAIL RS

- Choose M users out of N.
- Actions: to send an email or not
- Items: promotional email.
- States: interactions of users:

EMAIL RECOMMENDER SYSTEM BASELINES

EMAIL RECOMMENDER SYSTEM RESULTS

- **Q-network:** 2 hidden layers with 130 and 50 neurons, respectively, connected by ReLU.
- **Whittle network:** 1 hidden layer with 250 neurons, connected by ReLU.

CONCLUSION

- We proposed deep Q-learning with Whittle index for **CRMAB**, and applied it to an **email recommender system.**
- One important feature of our algorithm is the usage of only three neural networks for many (potentially thousands) heterogeneous arms. This is possible thanks to the **addition of context to the RMAB model**.
- **Experiments** on both **synthetic and real-world data** show that DQWIC outperforms existing baselines.
- **Future work** will focus on incorporating multiple actions, and enhancing fairness.

THANK YOU

REFERENCES

[1] X. Chen, I. Hou, et al. "Contextual Restless Multi-Armed Bandits with Application to Demand Response Decision-Making". In: arXiv preprint arXiv:2403.15640 (2024)

[2] B. Liang, L. Xu, A. Taneja, M. Tambe, and L. Janson. "A Bayesian Approach to Online Learning for Contextual Restless Bandits with Applications to Public Health". In: arXiv preprint arXiv:2402.04933 (2024).

WHITTLE INDEX SOLUTION TO THE DECOUPLED PROBLEM

- In general, the optimal policy divides the state space into two subsets:
	- Let $\mathcal{P}(\tilde{\lambda})$ be the set of ALL states for which it is **optimal to be idle** when the playing charge is $\tilde{\lambda}$.
	- Let $\mathcal{P}^c(\tilde{\lambda})$ be the set of ALL states for which it is **optimal to be in click** when the playing charge is $\tilde{\lambda}$.
- **Optimal policy:** play, if $s_t^{(i)} \in \mathcal{P}^C(\tilde{\lambda})$; stop, otherwise.

- \bullet An arm α is considered to be indexable if the set P increases monotonically from Φ to the entire state space as we increase $\tilde{\lambda}^{\alpha}$ (the subsidy for passive action).
- The RMAB problem is indexable if the Decoupled Problem is indexable for all bandits.

WHITTLE INDEX DEFINITION

- For an arm α , Whittle index is defined as the λ^{α} = inf { λ^{α} : $\alpha \in P$ }.
- It is the infimum subsidy λ^{α} one has to pay so that it is equally desirable to give an arm α active and passive action.

RECOMMENDER SYSTEM ALGORITHMS

RESTLESS BANDITS RECALL

APPLICATION RECOMMENDER SYSTEMS

- A Recommender System (RS) is:
	- an information filtering system
	- suggests items to users based on their past preferences or behavior.
	- used in many domains such as in: e-commerce, entertainment, and social media, etc.
- Let $R(u, j)$ represent the interaction between user u and item j . This could be:
	- **Explicit:** Ratings (e.g., $R(u, j) \in \{1, 2, ..., 5\}$).
	- Implicit: Binary clicks or preferences (e.g., $R(u, j) \in \{0, 1\}$).