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Motivation
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News Propagation Model
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News Propagation Model

It is interesting!!!

Madhu Dhiman Interplay between Epidemic and News Propagation Processes



5/ 26

News Propagation Model – Read and unread copies

Read already!!!
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News Propagation Model-Regular Updates

After k-th user forwards the news-item,

# unread copies, Ψk+1 = Ψk + ξk+1 −1︸︷︷︸
user read

the post

and

# total copies, Θk+1 = Θk + ξk+1

Ψk — no. of unread copies of the post,

Θk — no. of total copies of the post, and

ξk+1 – additional copies generated by new share/forward.
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News Propagation Model-scaling (as in [3])

Aim: A stochastic approximation (SA)-based iterative scheme – to aid analysis

Scaling

ψk =
Ψk
k
, and θk =

Θk
k
, for any k ≥ 1

SA-based iterative scheme

ψk+1 = ψk +
1

k + 1
(ξk+1 − 1− ψk)

θk+1 = θk +
1

k + 1
(ξk+1 − θk)

Suyog Kapsikar, Indrajit Saha, Khushboo Agarwal, Veeraruna Kavitha, and Quanyan Zhu, “Controlling Fake News

by Collective Tagging: A Branching Process Analysis”. IEEE Control Systems Letters, 2020 and ACC 2020
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Saturation and Replacement by new trending topic

Any news-item can trend - copies grow exponentially

After a while, saturates and replaced by new trending topic

Saturation ESk captured by:
• unread copies ψk < a threshold
• Total copies θk > a threshold

ESk = 1 iff ψk < δψ and θk > δθ

Figure: Saturated Regime

Madhu Dhiman Interplay between Epidemic and News Propagation Processes



9/ 26

Incorporation of Saturation in SA scheme

Extra or fictitious iterates to model saturation
• total copies reduce drastically – with a big rate, C
• unread copies also reduce to zero.

The overall SA iteration

ψk+1 = ψk + ϵ

(
(1− ESk ) (ξk+1 − 1− ψk)︸ ︷︷ ︸−ESk ψk︸ ︷︷ ︸

)
,

θk+1 = θk + ϵ

 (1− ESk ) (ξk+1 − θk)︸ ︷︷ ︸
Regular news-item update

− ESk Cθk︸ ︷︷ ︸
Saturation

 .
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ODE Approximation

M(θk) := Ek[ξk+1|σ(ψs, θs); s ≤ k],

M(θ) – expected number of shares, given θ (fraction of total copies)

•
ψ = (1− ES)

(
M(θ)− 1− ψ

)
− ESψ,

•
θ = (1− ES)

(
M(θ)− θ

)
− ESCθ.

Theorem, under certain conditions

The news-update trajectory {θk, ψk} converges to ODE solution (θ(·), ψ(·)) trajectory over any
finite time horizon.
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ODE Approximation - Numerical illustration

The Monte-Carlo estimates and the ODE solution trajectory are inseparable
Each cycle – one news-item (start to saturation)
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Epidemic Model (SIRS)

Well-known dynamics

di

dt
= i

(
β(1− i− r)− α

)
︸ ︷︷ ︸

Infected fraction

,
dr

dt
= (iαpr − rli)︸ ︷︷ ︸

Recovered fraction

,

(1− i(t)− r(t)) – susceptible fraction

β – disease spread rate, α – recovery rate

pr – immunized fraction of recovered sub-population

li – rate at which immunized individual looses immunity

Theorem

When disease spread rate < recovery rate, disease eradicates eventually,

Else, disease settles to non-zero (i, r).
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Influence of posts on Epidemic

News-items can influence public behaviour

Spread of fake news about masks – influences mask behaviour

Epidemic spread can increase/decrease

Or panic can be created etc.

Every trending post has an explosion
phase followed by saturation

Different people interact with post
at different times of its life-time.

Capture the influence via the total
copies shared

Figure: Limit Cycle
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Integrative two-time-scale model

Mean number of shares

M(θ) = η(1− aθ),

η – attractiveness factor

a – proportion factor

Epidemic ODE solution has a limit
cycle, solving it

θ∗∞(η) ≈ η

aη + 1

News propagates at faster time scale (hours)

Disease propagates at slower time scale (days)

Influence is not instantaneous – rather over the entire cycle

Influenced disease spread parameter

β = β + w
η

aη + 1
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Integrative model

Disease spread parameter influenced by one news-item

β = β + w
η

aη + 1

No influence on recovery α and immunization rate parameters pr
w = w(i), η = η(i) – depend on infected population

• when infection is high, people are more sensitive, more attracted to news-items

Influence of all trending topics, assuming similar post-characteristics

β(i) = β +
∑

m is trending

wm(i)
ηm(i)

aηm(i) + 1

↙

= β + w(i)
η(i)

aη(i) + 1
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Integrated ODE

di

dt
= i

(
β(i)(1− i− r)− α

)
︸ ︷︷ ︸

Infected fraction

,
dr

dt
= (iαpr − rli)︸ ︷︷ ︸

Recovered fraction

,

β(i) = β + w(i)
η(i)

aη(i) + 1
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Scenario 1: Increasing interest in News (I3N)
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Increasing interest in News (I3N)

As infection level i increases

η(i) = η(pi+ q) — public show more interest in reading and sharing posts

w(i) ≡ w — not reacting significantly over consumed information

β(0) – disease spread rate near zero infected fraction

Theorem

When β(0) < α, disease eradicates.

Otherwise,
• either disease eradicates – example when w < 0 (authentic information)
• or settles to non-zero value.
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Scenario 2: Increasing Behavioral Influence by News (IBIN)
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Increasing Behavioral Influence by News (IBIN)

As infected fraction increases

η(i) ≡ 1 – interest towards consuming and spreading news remains the same

w(i) = ui (linear influence) – reactions are more pronounced at higher i

Theorem

when β(0) < α, disease eradicates.

otherwise, either disease eradicates or settles to non-zero value or leads to limit cycle.

When public responds to news more sensitively

Limit cycles are created even without change in disease parameters !
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Scenario 3: IBIN & I3N
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IBIN & I3N

As infected fraction increases

η(i) = η(pi+ q) – more interest in reading and showing posts

w(i) = w + ui – more reaction towards posts

Figure: IBIN (p = 0), IBIN and I3N (p = 0.5)

p = 0 – increasing behavioural influence by
News (with higher i)
p = 0.5 – interest towards posts increases as
well as the response
Limit Cycle seen in either case
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Conclusions

When the disease characteristics remains the same and epidemic is not influenced
• the epidemic converges to a fixed fraction of infected, recovered fraction
• the disease is either eradicated or non-eradicated.

We developed a integrative two time scale ODE
• that captures the influence of epidemic on trending topics and vice versa
• the two time scale is different type than usually considered in literature

Studied variety of influences
• Public interest towards posts on OSN increases with increase in disease

the number of shares, total number of copies shared grow non-linearly
• Public react more strongly with higher infection levels

the disease spread rates are modulated accordingly.
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Conclusions contd

The integrated model indicates several interesting phenomenon
• disease can be cured probably when sufficient authentic posts get viral
• infection level can increase significantly when fake news spreads
• More interestingly, one can see limit cycles

disease fluctuates between small and large values of infection levels
this happens not due to variations in disease characteristic
rather due to public response towards available information
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Thank You!
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