Routing Optimization for Asynchronous Federated Learning on Heterogeneous Resources

Abdelkrim Alahyane 1,3 , Céline Comte 2,3 , Matthieu Jonckheere 2,3 , Éric Moulines 4 1 EMINES-UM6P, Ben Guerir, Morocco 2 CNRS, France ³LAAS. Toulouse. France ⁴CMAP, Ecole Polytechnique, France

Atelier en Évaluation des Performances – December 2, 2024

メロト メタト メミト メミト

 $2Q$

- Model for [Generalized AsyncSGD](#page-24-0)
- [Make the best of model updates](#page-31-0)
- [Account for clock-time](#page-39-0)

2 Model for [Generalized AsyncSGD](#page-24-0)

[Make the best of model updates](#page-31-0)

[Account for clock-time](#page-39-0)

∢ □

 \leftarrow \equiv $|b| = 4$ Þ

Goal: Optimize the average performance of a model using stochastic gradient descent, across multiple clients, under the supervision of a central server.

Goal: Optimize the average performance of a model using stochastic gradient descent, across multiple clients, under the supervision of a central server.

Solve the following optimization problem:

$$
\underset{w \in \mathbb{R}^d}{\text{Minimize}} \left\{ f(w) \triangleq \frac{1}{n} \sum_{i=1}^n f_i(w) \right\}.
$$

Goal: Optimize the average performance of a model using stochastic gradient descent, across multiple clients, under the supervision of a central server.

Solve the following optimization problem:

$$
\underset{w \in \mathbb{R}^d}{\text{Minimize}} \left\{ f(w) \triangleq \frac{1}{n} \sum_{i=1}^n f_i(w) \right\}.
$$

Each client $i \in \{1, 2, \ldots, n\}$:

- Has local objective function $f_i(w) = \mathbb{E}_{(x,y) \in \mathcal{D}_i} [\ell_i(NN(x,w), y)].$
- Approximates the gradient $\nabla_w f_i(w)$ with a stochastic gradient estimate $g_i(w)$.

- Problems: 1. The straggler effect
	- 2. Coordination

Challenge: Find a tradeoff between two antagonistic performance objectives

- Staleness, measured by the mean relative delay
- Speed, measured by the throughput, i.e., mean time between successive updates
- **Introduction of FL** (Konečný, McMahan, and Ramage [2015;](#page-46-0) McMahan et al. [2017;](#page-46-1) Wang et al. [2020;](#page-46-2) Qu, Song, and Tsui [2022;](#page-47-0) Makarenko et al. [2022;](#page-47-1) Mao et al. [2022;](#page-47-2) Tyurin and Richtárik [2022\)](#page-48-0)
- **.** Limitations of synchronous FL (Xie, Koyejo, and Gupta [2020;](#page-46-3) Chen et al. [2021\)](#page-46-4)
- Algorithms for asynchronous FL
	- FedAsync and its variants (Xie, Koyejo, and Gupta [2020;](#page-46-3) Chen et al. [2020;](#page-46-5) Xu et al. [2023\)](#page-48-1)
	- FedBuff (Nguyen et al. [2022\)](#page-47-3)
	- AsyncSGD (Koloskova, Stich, and Jaggi [2022\)](#page-47-4)
	- Generalized AsyncSGD (Leconte et al. [2024\)](#page-48-2)
	- AsGrad (Islamov, Safaryan, and Alistarh [2024\)](#page-48-3)
- Performance analysis of asynchronous FL
	- Impact of dataset heterogeneity (Chen et al. [2020;](#page-46-5) Chen et al. [2021;](#page-46-4) Xu et al. [2023;](#page-48-1) Koloskova, Stich, and Jaggi [2022;](#page-47-4) Agarwal, Joshi, and Pileggi [2024\)](#page-48-4)
	- Impact of queuing dynamics (Leconte et al. [2024\)](#page-48-4), (Agarwal, Joshi, and Pileggi 2024)

イ母 トイヨ トイヨト

- **Introduction of FL** (Konečný, McMahan, and Ramage [2015;](#page-46-0) McMahan et al. [2017;](#page-46-1) Wang et al. [2020;](#page-46-2) Qu, Song, and Tsui [2022;](#page-47-0) Makarenko et al. [2022;](#page-47-1) Mao et al. [2022;](#page-47-2) Tyurin and Richtárik [2022\)](#page-48-0)
- **.** Limitations of synchronous FL (Xie, Koyejo, and Gupta [2020;](#page-46-3) Chen et al. [2021\)](#page-46-4)
- Algorithms for asynchronous FL
	- FedAsync and its variants (Xie, Koyejo, and Gupta [2020;](#page-46-3) Chen et al. [2020;](#page-46-5) Xu et al. [2023\)](#page-48-1)
	- FedBuff (Nguyen et al. [2022\)](#page-47-3)
	- AsyncSGD (Koloskova, Stich, and Jaggi [2022\)](#page-47-4)
	- Generalized AsyncSGD (Leconte et al. [2024\)](#page-48-2)
	- AsGrad (Islamov, Safaryan, and Alistarh [2024\)](#page-48-3)
- Performance analysis of asynchronous FL
	- Impact of dataset heterogeneity (Chen et al. [2020;](#page-46-5) Chen et al. [2021;](#page-46-4) Xu et al. [2023;](#page-48-1) Koloskova, Stich, and Jaggi [2022;](#page-47-4) Agarwal, Joshi, and Pileggi [2024\)](#page-48-4)
	- Impact of queuing dynamics (Leconte et al. [2024\)](#page-48-4), (Agarwal, Joshi, and Pileggi 2024)

K 御 ト K ヨ ト K ヨ ト

² Model for [Generalized AsyncSGD](#page-24-0)

[Make the best of model updates](#page-31-0)

[Account for clock-time](#page-39-0)

∢ □

4. 三 $|b - 4|$

Algorithm 1: Central server

- **Input:** $T = #$ model updates, $n = #$ clients, $m = #$ tasks, $p =$ routing vector, $p =$ learning rate
- // Initialization
- 1 Initialize model parameter w_0 randomly;
- 2 Send m (gradient estimation) tasks to the clients based on w_0 ; // End Initialization

3 for $t = 0, \ldots, T$ do

4 | Receive stochastic gradient
$$
g_{C_t}(w_{I_t})
$$
 from a client C_t ;

5 | Update
$$
w_{t+1} \leftarrow w_t - \frac{\eta}{np_{C_t}} g_{C_t}(w_{I_t});
$$

S Sample a new client A_{t+1} with $\mathbb{P}(A_{t+1} = i) = p_i$;

7
$$
\mid
$$
 Send new model w_{t+1} to A_{t+1} ;

8 end

Algorithm 2: Client i

Input: Queue of tasks, D_i = local dataset

- 1 if queue is not empty then
- 2 Take received parameter w from queue in FIFO order;
- 3 Compute gradient estimate $q_i(w)$;
- 4 Send the gradient estimate to CS ;
- 5 | Repeat;
- 6 end

Queuing assumptions

- Tasks are processed in first-in-first-out order at each client.
- Processing times at client i are i.i.d. exponentially distributed with rate $\mu_i > 0$.
- Neglected: processing times at the central server, communication times.

Queuing assumptions

- Tasks are processed in first-in-first-out order at each client.
- Processing times at client i are i.i.d. exponentially distributed with rate $\mu_i > 0$.
- Neglected: processing times at the central server, communication times.

Dataset assumptions

- Lower boundedness: The objective function f is bounded from below by some f^* .
- Gradient smoothness: f_i has an L-Lipschitz continuous gradient, for each client i.
- Stochastic gradient properties: $g_i(w)$ is unbiased with variance bounded by $\sigma^2>0$, for each $i.$
- Bounded client heterogeneity: $\mathbb{E}[\|\nabla f(w) \nabla f_i(w)\|^2] \leq \zeta^2$ for each client i, parameter w.

Definitions and notation

For each $t \in \{1, 2, ..., T\}$, step t proceeds as follows:

- A task is assigned to client A_t , with $\mathbb{P}(A_t = i) = p_i$.
- A task is completed at client $C_t.$
- The system state at the end of this step is $X_t^{m-1} = (X_{1,t}^{m-1}, X_{2,t}^{m-1}, \ldots, X_{n,t}^{m-1})$, with

$$
X_{i,t}^{m-1} = X_{i,t-1}^{m-1} + \mathbb{1}[A_t = i] - \mathbb{1}[C_t - i].
$$

Definitions and notation

For each $t \in \{1, 2, ..., T\}$, step t proceeds as follows:

- A task is assigned to client A_t , with $\mathbb{P}(A_t = i) = p_i$.
- A task is completed at client $C_t.$
- The system state at the end of this step is $X_t^{m-1} = (X_{1,t}^{m-1}, X_{2,t}^{m-1}, \ldots, X_{n,t}^{m-1})$, with

$$
X_{i,t}^{m-1} = X_{i,t-1}^{m-1} + \mathbb{1}[A_t = i] - \mathbb{1}[C_t - i].
$$

The relative delay at time t and client i is defined as follows:

$$
D_{i,t} = \mathbb{1}[A_t = i]R_{i,t}, \text{ where } R_{i,t} = \min \left\{ r \in \mathbb{N} : \sum_{s=t}^{t+r} \mathbb{1}[C_s = i] = X_{i,t-1}^{m-1} + \mathbb{1}[A_t = i] \right\}.
$$

Definitions and notation

For each $t \in \{1, 2, ..., T\}$, step t proceeds as follows:

- A task is assigned to client A_t , with $\mathbb{P}(A_t = i) = p_i$.
- A task is completed at client $C_t.$
- The system state at the end of this step is $X_t^{m-1} = (X_{1,t}^{m-1}, X_{2,t}^{m-1}, \ldots, X_{n,t}^{m-1})$, with

$$
X_{i,t}^{m-1} = X_{i,t-1}^{m-1} + \mathbb{1}[A_t = i] - \mathbb{1}[C_t - i].
$$

The relative delay at time t and client i is defined as follows:

$$
D_{i,t} = \mathbb{1}[A_t = i]R_{i,t}, \text{ where } R_{i,t} = \min \left\{ r \in \mathbb{N} : \sum_{s=t}^{t+r} \mathbb{1}[C_s = i] = X_{i,t-1}^{m-1} + \mathbb{1}[A_t = i] \right\}.
$$

We assume the Markov chain $(X_t^{m-1},t\geq 0)$ is stationary, hence we drop the t index.

[Introduction](#page-2-0)

² Model for [Generalized AsyncSGD](#page-24-0)

3 [Make the best of model updates](#page-31-0)

[Account for clock-time](#page-39-0)

∢ □

4. 三 $|b - 4|$ Ξ

The system dynamics $(X_t^{m-1}, t \geq 0)$ are given by a **Jackson network** (Jackson [1957\)](#page-46-6).

 \overline{f}

- The system dynamics $(X_t^{m-1}, t \geq 0)$ are given by a **Jackson network** (Jackson [1957\)](#page-46-6).
- Upper bound on the empirical mean of the norm-square of the gradient of f : There is $\eta_{\text{max}}(p) > 0$ so that, for any $\eta \in (0, \eta_{\text{max}}(p)).$

$$
\frac{1}{T+1} \sum_{t=0}^{T} \mathbb{E}[\|\nabla f(w_t)\|^2] \le G,
$$
\nwhere $G = \frac{A}{\eta(T+1)} + \frac{\eta L B}{n^2} \sum_{i=1}^{n} \frac{1}{p_i} + \frac{\eta^2 L^2 B m}{n^2} \sum_{i=1}^{n} \frac{\mathbb{E}[D_i]}{p_i^2}.$

The variables A, B , and L depend on the learning problem and are estimated heuristically.

$$
G = \frac{A}{\eta(T+1)} + \frac{\eta LB}{n^2} \sum_{i=1}^{n} \frac{1}{p_i} + \frac{\eta^2 L^2 Bm}{n^2} \sum_{i=1}^{n} \frac{\mathbb{E}[D_i]}{p_i^2}
$$

←□

4 母

Theorem

The mean relative delay $\mathbb{E}[D_i]$ and its gradient are given by

$$
\mathbb{E}[D_i] = \mathbb{E}[X_i^{m-1}], \qquad \frac{\partial \mathbb{E}[D_i]}{\partial p_j} = \frac{1}{p_j} \operatorname{Cov}[X_i^{m-1}, X_j^{m-1}], \qquad i, j \in \{1, 2, \dots, n\}
$$

Ξ

$$
G = \frac{A}{\eta(T+1)} + \frac{\eta LB}{n^2} \sum_{i=1}^{n} \frac{1}{p_i} + \frac{\eta^2 L^2 Bm}{n^2} \sum_{i=1}^{n} \frac{\mathbb{E}[D_i]}{p_i^2}
$$

Theorem

The mean relative delay $\mathbb{E}[D_i]$ and its gradient are given by

$$
\mathbb{E}[D_i] = \mathbb{E}[X_i^{m-1}], \qquad \frac{\partial \mathbb{E}[D_i]}{\partial p_j} = \frac{1}{p_j} \operatorname{Cov}[X_i^{m-1}, X_j^{m-1}], \qquad i, j \in \{1, 2, \dots, n\},
$$

where for each $i, j \in \{1, 2, \ldots, n\}$,

$$
\mathbb{E}[X_i^{m-1}] = \sum_{k=1}^{m-1} \left(\frac{p_i}{\mu_i}\right)^k \frac{Z_{n,m-1-k}}{Z_{n,m-1}}, \quad \mathbb{E}[X_i^{m-1}X_j^{m-1}] = \sum_{\substack{k,\ell=1 \ k+\ell \le m-1}}^{m-1} \left(\frac{p_i}{\mu_i}\right)^k \left(\frac{p_j}{\mu_j}\right)^{\ell} \frac{Z_{n,m-1-k-\ell}}{Z_{n,m-1}},
$$

and the $Z_{n,m}$'s are computed using Buzen's algorithm.

Procedure

- Optimize G using the Adam gradient-descent algorithm, initialized with $p^{\mathsf{uniform}}.$
- Simulate the dynamics of the Jackson network.
- Evaluate Generalized AsyncSGD on image classification tasks using the Fashion-MNIST and CIFAR-10 datasets, each containing 10 equally distributed image classes.

Procedure

- Optimize G using the Adam gradient-descent algorithm, initialized with $p^{\mathsf{uniform}}.$
- Simulate the dynamics of the Jackson network.
- Evaluate Generalized AsyncSGD on image classification tasks using the Fashion-MNIST and CIFAR-10 datasets, each containing 10 equally distributed image classes.

Datasets

- **Homogeneous:** Data is distributed i.i.d. across clients, and all clients have the same number of data points.
- \bullet Heterogeneous: For each k, we sample a vector $p_k \sim \text{Dir}_n(0.5)$, where $p_{k,j}$ is the proportion of class-k instances allocated to client j and $Dir_n(\beta)$ the Dirichlet distribution with dimension *n* and concentration parameter $\beta > 0$.

Numerical results

$$
G = \frac{A}{\eta(T+1)} + \frac{\eta LB}{n^2} \sum_{i=1}^n \frac{1}{p_i} + \frac{\eta^2 L^2 B m}{n^2} \sum_{i=1}^n \frac{\mathbb{E}[D_i]}{p_i^2}
$$

イロト (個) × (目) × (目) ×

Figure: Performance on the validation set. Parameters: $n=20$, $m=100$, $\mu_i=e^{i/100}$, $\eta=0.01$, $L=1$.

[Introduction](#page-2-0)

² Model for [Generalized AsyncSGD](#page-24-0)

[Make the best of model updates](#page-31-0)

4 [Account for clock-time](#page-39-0)

Céline Comte **Atelier en Évaluation des Performances** – December 2, 2024 **Céline Comte 16** / 23

∢ □

 \leftarrow \equiv $|b - 4|$ Ξ

Conjecture

There exists $\eta_{\text{max}}(p) > 0$ such that, for any $\eta \in (0, \eta_{\text{max}}(p))$,

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left[\tau_t \|\nabla f(w_t)\|^2 \right] \leq H,
$$
\nwhere
$$
H = \frac{\tilde{A}}{\eta \lambda(p)} + \frac{\eta L B}{\lambda(p) n^2} \sum_{i=1}^{n} \frac{1}{p_i} + \frac{\eta^2 L^2 B m}{\lambda(p) n^2} \sum_{i=1}^{n} \frac{\mathbb{E}[X_i^m]}{p_i^2}.
$$

The variables \tilde{A} , B , and L depend on the learning problem, and

.

$$
\lambda(p) = \sum_{i=1}^{n} \mu_i \mathbb{P}(X_i^m > 0) = \frac{Z_{n,m-1}}{Z_{n,m}}
$$

 \leftarrow

4 母

Procedure

- Optimize H using the Adam gradient-descent algorithm, initialized with $p^{\mathsf{uniform}}.$
- Simulate the dynamics of the Jackson network.
- Evaluate Generalized AsyncSGD on image classification tasks using the KMNIST and CIFAR-10 datasets, each containing 10 equally distributed image classes.

Datasets

- **Homogeneous:** Data is distributed i.i.d. across clients, and all clients have the same number of data points.
- \bullet Heterogeneous: For each k, we sample a vector $p_k \sim \text{Dir}_n(0.5)$, where $p_{k,j}$ is the proportion of class-k instances allocated to client j and $Dir_n(\beta)$ the Dirichlet distribution with dimension *n* and concentration parameter $\beta > 0$.

Numerical results

$$
H = \frac{\tilde{A}}{\eta \lambda(p)} + \frac{\eta L B}{\lambda(p) n^2} \sum_{i=1}^n \frac{1}{p_i} + \frac{\eta^2 L^2 B m}{\lambda(p) n^2} \sum_{i=1}^n \frac{\mathbb{E}[X_i^m]}{p_i^2}
$$

(ロ) (何) (ヨ) (ヨ

Figure: Performance on the validation set. Parameters: $n = m = 30$, $\mu_{1...10} = \frac{1}{100}$, $\mu_{11...20} = \frac{1}{10}$, $\mu_{21...30} = 1, \tilde{A} = 15, L = 1, \sigma = 3, G = 10, \eta = 0.01.$

э

Contributions

- Computed mean relative delay by applying (a variant of) Little's law in Jackson networks.
- Computed its gradient by rewriting it as an expectation.
- Introduced a new clock-time-aware performance metric and derive an upper-bound.
- Designed a gradient-descent algorithm to optimize the upper-bounds.
- Numerically evaluated performance on image-classification tasks (Fashion-MNIST, KMNIST, and CIFAR-10 datasets).

Contributions

- Computed mean relative delay by applying (a variant of) Little's law in Jackson networks.
- Computed its gradient by rewriting it as an expectation.
- Introduced a new clock-time-aware performance metric and derive an upper-bound.
- Designed a gradient-descent algorithm to optimize the upper-bounds.
- Numerically evaluated performance on image-classification tasks (Fashion-MNIST, KMNIST, and CIFAR-10 datasets).

Take-away: Find a tradeoff between two antagonistic performance objectives.

Contributions

- Computed mean relative delay by applying (a variant of) Little's law in Jackson networks.
- Computed its gradient by rewriting it as an expectation.
- Introduced a new clock-time-aware performance metric and derive an upper-bound.
- Designed a gradient-descent algorithm to optimize the upper-bounds.
- Numerically evaluated performance on image-classification tasks (Fashion-MNIST, KMNIST, and CIFAR-10 datasets).

Take-away: Find a tradeoff between two antagonistic performance objectives.

Future works: 1. More tailored scheduling that accounts for staleness? 2. State-dependeng routing mechanism?

- Jackson, James R (1957). "Networks of waiting lines". In: Operations research.
- Konečný, Jakub, Brendan McMahan, and Daniel Ramage (2015). Federated optimization: Distributed optimization beyond the datacenter. arXiv: [1511.03575](https://arxiv.org/abs/1511.03575).
- H McMahan, Brendan et al. (2017). "Communication-efficient learning of deep networks from decentralized data". In: Artificial intelligence and statistics. PMLR.
- Chen, Yujing et al. (2020). "Asynchronous online federated learning for edge devices with E. non-iid data". In: 2020 IEEE International Conference on Big Data (Big Data). IEEE.
- Wang, Jianyu et al. (2020). "Tackling the objective inconsistency problem in heterogeneous 晶 federated optimization". In: Advances in neural information processing systems 33.
- Xie, Cong, Sanmi Koyejo, and Indranil Gupta (2020). Asynchronous federated F optimization. arXiv: [1903.03934](https://arxiv.org/abs/1903.03934).
- Chen, Zheyi et al. (2021). "Towards asynchronous federated learning for heterogeneous E. edge-powered internet of things". In: Digital Communications and Networks 7.3.
- Koloskova, Anastasiia, Sebastian U Stich, and Martin Jaggi (2022). "Sharper convergence guarantees for asynchronous SGD for distributed and federated learning". In: Advances in Neural Information Processing Systems 35.
- Makarenko, Maksim et al. (2022). "Adaptive compression for communication-efficient distributed training". In: arXiv preprint arXiv:2211.00188.
- Mao, Yuzhu et al. (2022). "Communication-efficient federated learning with adaptive quantization". In: ACM Transactions on Intelligent Systems and Technology (TIST) 13.4.
- Nguyen, John et al. (2022). "Federated learning with buffered asynchronous aggregation". In: International Conference on Artificial Intelligence and Statistics (AISTATS). Ed. by Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera. PMLR.
- Qu, Linping, Shenghui Song, and Chi-Ying Tsui (2022). "FedDQ: Communication-efficient F federated learning with descending quantization". In: GLOBECOM 2022 - 2022 IEEE Global Communications Conference.
- Tyurin, Alexander and Peter Richtárik (2022). DASHA: Distributed nNonconvex optimization with communication compression, oOptimal oracle complexity, and no client synchronization. arXiv: [2202.01268](https://arxiv.org/abs/2202.01268).
- Xu, Chenhao et al. (2023). "Asynchronous federated learning on heterogeneous devices: A 晶 survey". In: Computer Science Review 50.
- Agarwal, Aayushya, Gauri Joshi, and Larry Pileggi (2024). FedECADO: A dynamical 冨 system model of federated learning. arXiv: [2410.09933](https://arxiv.org/abs/2410.09933).
- Islamov, Rustem, Mher Safaryan, and Dan Alistarh (2024). "AsGrad: A sharp unified 昂 analysis of asynchronous-SGD algorithms". In: International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR.
- Leconte, Louis et al. (2024). "Queuing dynamics of asynchronous federated learning". In: International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR.

Routing Optimization for Asynchronous Federated Learning on Heterogeneous Resources

Abdelkrim Alahyane, Céline Comte, Matthieu Jonckheere, and Eric Moulines ´

To appear soon on HAL and arXiv

Céline Comte CNRS & LAAS, Toulouse, France

celine.comte@cnrs.fr <https://homepages.laas.fr/ccomte/>

メロト メタト メミト メミト

画

 $2Q$

SOLACE Team, Toulouse, France <https://solace.cnrs.fr/>

$\mathbb{E}[D_i] = \mathbb{E}[X_i^{m-1}]$: Consequences

$$
G = \frac{A}{\eta(T+1)} + \frac{\eta LB}{n^2} \sum_{i=1}^n \frac{1}{p_i} + \frac{\eta^2 L^2 B m}{n^2} \sum_{i=1}^n \frac{\mathbb{E}[D_i]}{p_i^2}
$$

Dependency on the number m of tasks?

 $\mathbb{E}[D_i]$ and G are increasing with m , and

$$
\sum_{i=1}^{n} \mathbb{E}[D_i] = \sum_{i=1}^{n} \mathbb{E}[X_i^{m-1}] = m - 1.
$$

• Performance is best with $m = 1$ task!

Dependency on the routing policy p ?

- Second term minimized by p^{uniform}
- Third term is non-monotonic

Figure: Third term of the bound G vs. the routing probability to the slowest client, in a toy example with $n = 2$ clients and $m = 20$ tasks, for various speed vectors $\mu = (\mu_s, \mu_f)$.

$\mathbb{E}[D_i] = \mathbb{E}[X_i^{m-1}]$: Simple routing strategie $S^= \frac{A}{\eta(T+A)}$ $\frac{A}{\eta(T+1)}+\frac{\eta LB}{n^2}$ $rac{n}{n^2}$ $\sum_{i=1}^n$ 1 $\frac{1}{p_i} + \frac{\eta^2 L^2 B m}{n^2}$ $rac{L^2 Bm}{n^2} \sum_{i=1}^n$ $\mathbb{E}[D_i]$ p_i^2

Uniform routing p^{uniform}

The default in many applications: $p_i^{\text{uniform}} = \frac{1}{n}$ $\frac{1}{n}$.

•
$$
G(p^{\text{uniform}}) = \frac{A}{\eta(T+1)} + \eta LB + \eta^2 L^2 Bm(m-1).
$$

Proportional routing $p^{\propto \mu}$

• A load-balancing heuristic:
$$
p_i^{\alpha\mu} = \frac{\mu_i}{\sum_j \mu_j}
$$
.
\n• $G(p^{\alpha\mu}) = \frac{A}{\eta(T+1)} + \frac{\eta LB|\mu|}{n^2} \sum_i \frac{1}{\mu_i} + \frac{\eta^2 L^2 B m (m-1)|\mu|^2}{n^3} \sum_i \frac{1}{\mu_i^2}$.

 $H = \frac{\tilde{A}}{A}$ $\frac{A}{\eta\lambda(p)}+\frac{\eta LB}{\lambda(p)n}$ $\frac{\eta L B}{\lambda(p) n^2} \sum_{i=1}^n \frac{1}{p_i}$ $i=1$ $rac{1}{p_i} + \frac{\eta^2 L^2 B m}{\lambda(p) n^2}$ $\frac{n^2L^2Bm}{\lambda(p)n^2}\sum_{i=1}^n$ $i=1$ $\mathbb{E}[X_i^m]$ p 2

Non-monotonicity with respect to the number m of tasks

- Contrary to G , H is not increasing in m , as it accounts for the duration of a step.
- H is minimized by some $m^* > 1$.
- m^* decreases with the learning rate η .

Figure: Bound $H(p^{\text{uniform}})$ as a function of the number m of tasks for different values of the step size η . The system consists of $n = 50$ clients, and the service speeds are $\mu_i = e^{i/100}$.