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Federated Learning (FL)

Goal: Optimize the average performance of a model using stochastic gradient descent,
across multiple clients, under the supervision of a central server.

Solve the following optimization problem:

Minimize
w∈Rd

{
f(w) ≜

1

n

n∑
i=1

fi(w)

}
.

Each client i ∈ {1, 2, . . . , n}:
Has local objective function fi(w) = E(x,y)∈Di

[ℓi(NN(x,w), y)].

Approximates the gradient ∇wfi(w) with a stochastic gradient estimate gi(w).
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Synchronous FL

Decentralized SGD: The central server sends (gradient estimation) tasks to m ≤ n clients,
waits until all m clients answer, and updates the model parameter.

Client 1

Client 2

Client 3

Central server
Parameter w0

g1(w0)?

g3(w0)?

g1(w1)?

g2(w1)?

Problems: 1. The straggler effect
2. Coordination
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Asynchronous FL

Asynchronicity: The central server updates the model parameter au fil de l’eau (that is,
as gradient estimates are received)

Client 1

Client 2

Client 3

Central server
Parameter w0

g1(w0)?

g3(w0)?

Challenge: Find a tradeoff between two antagonistic performance objectives

Staleness, measured by the mean relative delay

Speed, measured by the throughput, i.e., mean time between successive updates
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Generalized AsyncSGD

Algorithm 1: Central server

Input: T = # model updates, n = # clients, m = # tasks,
p = routing vector, η = learning rate

// Initialization

1 Initialize model parameter w0 randomly;
2 Send m (gradient estimation) tasks to the clients based on w0;
// End Initialization

3 for t = 0, . . . , T do
4 Receive stochastic gradient gCt(wIt) from a client Ct;
5 Update wt+1 ← wt − η

npCt
gCt(wIt);

6 Sample a new client At+1 with P(At+1 = i) = pi;
7 Send new model wt+1 to At+1;

8 end

Algorithm 2: Client i

Input: Queue of tasks, Di = local dataset

1 if queue is not empty then
2 Take received parameter w from

queue in FIFO order;
3 Compute gradient estimate gi(w);
4 Send the gradient estimate to CS;
5 Repeat;

6 end
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Assumptions

Queuing assumptions

Tasks are processed in first-in-first-out order at each client.

Processing times at client i are i.i.d. exponentially distributed with rate µi > 0.

Neglected: processing times at the central server, communication times.

Dataset assumptions

Lower boundedness: The objective function f is bounded from below by some f∗.

Gradient smoothness: fi has an L-Lipschitz continuous gradient, for each client i.

Stochastic gradient properties: gi(w) is unbiased with variance bounded by σ2 > 0, for each i.

Bounded client heterogeneity: E[∥∇f(w)−∇fi(w)∥2] ≤ ζ2 for each client i, parameter w.
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Definitions and notation

For each t ∈ {1, 2, . . . , T}, step t proceeds as follows:

A task is assigned to client At, with P(At = i) = pi.

A task is completed at client Ct.

The system state at the end of this step is Xm−1
t = (Xm−1

1,t , Xm−1
2,t , . . . , Xm−1

n,t ), with

Xm−1
i,t = Xm−1

i,t−1 + 1[At = i]− 1[Ct − i].

The relative delay at time t and client i is defined as follows:

Di,t = 1[At = i]Ri,t, where Ri,t = min

{
r ∈ N :

t+r∑
s=t

1[Cs = i] = Xm−1
i,t−1 + 1[At = i]

}
.

We assume the Markov chain (Xm−1
t , t ≥ 0) is stationary, hence we drop the t index.
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Results from (Leconte et al. 2024)

The system dynamics (Xm−1
t , t ≥ 0) are given by a Jackson network (Jackson 1957).

Upper bound on the empirical mean of the norm-square of the gradient of f :
There is ηmax(p) > 0 so that, for any η ∈ (0, ηmax(p)),

1

T + 1

T∑
t=0

E[∥∇f(wt)∥2] ≤ G,

where G =
A

η(T + 1)
+

ηLB

n2

n∑
i=1

1

pi
+

η2L2Bm

n2

n∑
i=1

E[Di]

p2i
.

The variables A, B, and L depend on the learning problem and are estimated heuristically.
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Mean relative delay

Theorem

The mean relative delay E[Di] and its gradient are given by

E[Di] = E[Xm−1
i ],

∂E[Di]

∂pj
=

1

pj
Cov[Xm−1

i , Xm−1
j ], i, j ∈ {1, 2, . . . , n}

,

where for each i, j ∈ {1, 2, . . . , n},

E[Xm−1
i ] =

m−1∑
k=1

(
pi
µi

)k Zn,m−1−k

Zn,m−1
, E[Xm−1

i Xm−1
j ] =

m−1∑
k,ℓ=1

k+ℓ≤m−1

(
pi
µi

)k ( pj
µj

)ℓ Zn,m−1−k−ℓ

Zn,m−1
,

and the Zn,m’s are computed using Buzen’s algorithm.

G =
A

η(T + 1)
+

ηLB

n2

n∑
i=1

1

pi
+

η2L2Bm

n2

n∑
i=1

E[Di]

p2i
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Numerical results G =
A

η(T + 1)
+

ηLB

n2

n∑
i=1

1

pi
+

η2L2Bm

n2

n∑
i=1

E[Di]

p2i

Procedure

Optimize G using the Adam gradient-descent algorithm, initialized with puniform.

Simulate the dynamics of the Jackson network.

Evaluate Generalized AsyncSGD on image classification tasks using the Fashion-MNIST
and CIFAR-10 datasets, each containing 10 equally distributed image classes.

Datasets

Homogeneous: Data is distributed i.i.d. across clients, and all clients have the same
number of data points.

Heterogeneous: For each k, we sample a vector pk ∼ Dirn(0.5), where pk,j is the
proportion of class-k instances allocated to client j and Dirn(β) the Dirichlet distribution
with dimension n and concentration parameter β > 0.
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Numerical results

Figure: Performance on the validation set. Parameters: n = 20, m = 100, µi = ei/100, η = 0.01, L = 1.
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A
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1
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Performance bound and mean delay

Conjecture

There exists ηmax(p) > 0 such that, for any η ∈ (0, ηmax(p)),

1

T

T∑
t=1

E
[
τt∥∇f(wt)∥2

]
≤ H,

where H =
Ã

ηλ(p)
+

ηLB

λ(p)n2

n∑
i=1

1

pi
+

η2L2Bm

λ(p)n2

n∑
i=1

E[Xm
i ]

p2i
.

The variables Ã, B, and L depend on the learning problem, and

λ(p) =

n∑
i=1

µiP(Xm
i > 0) =

Zn,m−1

Zn,m
.
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Numerical results

Procedure

Optimize H using the Adam gradient-descent algorithm, initialized with puniform.

Simulate the dynamics of the Jackson network.

Evaluate Generalized AsyncSGD on image classification tasks using the KMNIST and
CIFAR-10 datasets, each containing 10 equally distributed image classes.

Datasets

Homogeneous: Data is distributed i.i.d. across clients, and all clients have the same
number of data points.

Heterogeneous: For each k, we sample a vector pk ∼ Dirn(0.5), where pk,j is the
proportion of class-k instances allocated to client j and Dirn(β) the Dirichlet distribution
with dimension n and concentration parameter β > 0.

H =
Ã

ηλ(p)
+

ηLB

λ(p)n2

n∑
i=1

1

pi
+

η2L2Bm

λ(p)n2

n∑
i=1

E[Xm
i ]

p2i
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Numerical results

Figure: Performance on the validation set. Parameters: n = m = 30, µ1...10 = 1
100 , µ11...20 = 1

10 ,

µ21...30 = 1, Ã = 15, L = 1, σ = 3, G = 10, η = 0.01.
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Conclusion

Contributions

Computed mean relative delay by applying (a variant of) Little’s law in Jackson networks.

Computed its gradient by rewriting it as an expectation.

Introduced a new clock-time-aware performance metric and derive an upper-bound.

Designed a gradient-descent algorithm to optimize the upper-bounds.

Numerically evaluated performance on image-classification tasks (Fashion-MNIST,
KMNIST, and CIFAR-10 datasets).

Take-away: Find a tradeoff between two antagonistic performance objectives.

Future works: 1. More tailored scheduling that accounts for staleness?
2. State-dependeng routing mechanism?
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Céline Comte Atelier en Évaluation des Performances – December 2, 2024 21 / 23

https://arxiv.org/abs/1511.03575
https://arxiv.org/abs/1903.03934


References II

Koloskova, Anastasiia, Sebastian U Stich, and Martin Jaggi (2022). “Sharper convergence
guarantees for asynchronous SGD for distributed and federated learning”. In: Advances in
Neural Information Processing Systems 35.
Makarenko, Maksim et al. (2022). “Adaptive compression for communication-efficient
distributed training”. In: arXiv preprint arXiv:2211.00188.
Mao, Yuzhu et al. (2022). “Communication-efficient federated learning with adaptive
quantization”. In: ACM Transactions on Intelligent Systems and Technology (TIST) 13.4.
Nguyen, John et al. (2022). “Federated learning with buffered asynchronous aggregation”.
In: International Conference on Artificial Intelligence and Statistics (AISTATS). Ed. by
Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera. PMLR.
Qu, Linping, Shenghui Song, and Chi-Ying Tsui (2022). “FedDQ: Communication-efficient
federated learning with descending quantization”. In: GLOBECOM 2022 - 2022 IEEE
Global Communications Conference.
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To appear soon on HAL and arXiv
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E[Di] = E[Xm−1
i ]: Consequences

Dependency on the number m of tasks?

E[Di] and G are increasing with m, and

n∑
i=1

E[Di] =

n∑
i=1

E[Xm−1
i ] = m− 1.

Performance is best with m = 1 task!

Dependency on the routing policy p?

Second term minimized by puniform

Third term is non-monotonic

Figure: Third term of the bound G vs. the routing
probability to the slowest client, in a toy example
with n = 2 clients and m = 20 tasks, for various
speed vectors µ = (µs, µf ).

G =
A

η(T + 1)
+

ηLB

n2

n∑
i=1

1

pi
+

η2L2Bm

n2

n∑
i=1

E[Di]

p2i
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E[Di] = E[Xm−1
i ]: Simple routing strategies

Uniform routing puniform

The default in many applications: puniformi = 1
n .

G(puniform) =
A

η(T + 1)
+ ηLB + η2L2Bm(m− 1).

Proportional routing p∝µ

A load-balancing heuristic: p∝µ
i = µi∑

j µj
.

G(p∝µ) =
A

η(T + 1)
+

ηLB|µ|
n2
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1
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n3
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i
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E[Si] = E[Xm
i ]: Consequences

Non-monotonicity with respect to the
number m of tasks

Contrary to G, H is not increasing in m,
as it accounts for the duration of a step.

H is minimized by some m∗ > 1.

m∗ decreases with the learning rate η. Figure: Bound H(puniform) as a function of the
number m of tasks for different values of the step
size η. The system consists of n = 50 clients, and
the service speeds are µi = ei/100.
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