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Combinatorial bandits (10’)
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Combinatorial semi-bandits

> A learner selects decision A € A C {0, 1} attime 7 € {1,..., T}

» She obtains reward AT X(¢) with (X()), i.i.d. with mean p* € R?
and independent entries

» She observes A(f) © X(1) = (Ai(1)Xi(1))1<i<a

» Goal: minimize regret

T T
R(T) =maxE | A()"'X(0)| —E |> A@)"X(t
() = max ;0 (0 ;0 (1
oracle your al‘grorithm

> Size m = maxac4 ||Al|1, gap A(A) = (max,eg AT p*) —ATp* .

Cesa-Bianchi and Lugosi, 2011, "Combinatorial bandits"
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Optimistic algorithms 1: CUCB

» Estimate of y* at time ¢

) with N;(z Z Ai(

s<t

» Optimistic algorithm, extension of UCB1, select

d
~ 2Int
A(r) € arg gle%fl( [;Aiﬂz(t) + A N,(t)]

» Implementable by linear programming over X’

Theorem (Kveton et al, 2014)

The regret of CUCB verifies R(T) < CidmInT /Apin with Cy a
universal constant.

Kveton, Wen, Ashkan and Szepesvari, 2014, "Tight regret bounds for stochastic
combinatorial semi-bandits"
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Optimistic algorithms 2: ESCB

» Same idea as CUCB, with tighter confidence bounds

d
A(r) € arg max 2A,~ﬂi(t) +
i=

» Can be NP-Hard to implement, even if linear programming over
X is polynomial

Theorem (Degenne et al, 2016)

The regret of ESCB verifies
R(T) < Cod(Inm)?>In T/ Amin + Pa(m,d, 1/ Apin) with C> a
universal constant and P, a polynomial.

Combes, Lelarge, Proutiere and Talebi, 2015, "Combinatorial bandits revisited"
Degenne and Perchet, 2016, "Combinatorial semi-bandit with known
covariance"
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Sampling algorithms: CTS

> Observations up to time #, Y (1) = (A(s) © X(¢))s<s, prior p,, on

*

I
P Posterior sampling algorithm, select decision

T .
Alr) € argmax (A 9(:)) with 0() ~ py(n

» Example 1: (B-CTS) Bernoulli rewards and uniform priors, then
6:(1) ~ Beta <Ni(t)(1 - éi(t)),Nx(t)éi(t))
with independent entries.
Theorem (Perrault et al, 2012)

The regret of B-CTS verifies
R(T) < Gid(Inm)?>In T/ Amin + Q3(m,d, 1/ Amin) with C a
universal constant and Q growing at least exponentially in m, d.

Perrault, Boursier, Valko and Perchet, 2020, "Statistical efficiency of thompson
sampling for combinatorial semi-bandits"
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Sampling algorithms: CTS

» Example 2: (G-CTS) Gaussian rewards and gaussian priors, then

A(1) € arg max (ATH(I)> with 0() ~ N(j(1), 2V (1))

. 1 1
V(t) = diag <Nl(t)’ ey Nd(t))

Perrault, Boursier, Valko and Perchet, 2020, "Statistical efficiency of thompson

sampling for combinatorial semi-bandits"
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The BG-CTS Algorithm (57)
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BG-CTS algorithm
» Sampling algorithm

A(f) € arg max (ATH(t)) with 0(r) ~ N(ji(t), 2g(1)V (1))
. 1 1
V(t) = diag <Nl(t)’ vy Nd(t)>

» Exploration boost

Int+ (m+2)Inlnt+ (m/2)In(1 +e/N)

g()=(1+2) 7

» Similar to G-CTS for Gaussian rewards with a well chosen boost

» Implementable by linear programming over X’

Zhang and Combes, 2024, "Thompson sampling for combinatorial bandits:
polynomial regret and mismatched sampling paradox"
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Regret and complexity of BG-CTS

Theorem (Zhang et al, 2024)

Consider I-subgaussian rewards. The regret of BG-CTS verifies
R(T) < Ca4d(Inm) InT/Apin + Pa(m,d, 1/ Apin) with Cs a
universal constant and P4 a polynomial.

» Valid for Gaussian, Bernoulli, bounded etc.

» If linear programming over X is polynomial then polynomial
complexity

» Best known polynomial (complexity, regret) algorithm for
asymptotic regret for general action set.

P Leads to an interesting paradox ...

Zhang and Combes, 2024, "Thompson sampling for combinatorial bandits:
polynomial regret and mismatched sampling paradox"
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Rationale: self normalized concentration inequalities

» Why is the "correct" confidence boost g(z) ?
» Self-normalized concentration inequality, choose g(7) such that

s<t AT V(S)A

T(n s) — u*
p (Sup A7 () — )l ,/21n(t)g(z)) ~ (hiz)z

» The boost insure that : Thanks to this boost the proof relies on
showing that with high probability :

t
vee [T,y 1 {A*Te(s) > A*Tu*} > ct?

N

with a constant 8 > 0.

Degenne and Perchet, 2016, "Combinatorial semi-bandit with known
covariance"
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Mismatched sampling paradox (5)
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Exponential regret of CTS

Theorem (Zhang et al, 2021)

Consider Bernoulli rewards. For any d there exists at least one 0 and
X such that the regret of B-CTS is greater than that of random choice
Sor all t < Ty(d) with Ty growing at least exponentially in d. Also,
B-CTS is not minimax optimal.

> CTS is too greedy, and can get "stuck” for exponentially long
» For d = 20, Ty(d) is greater than the age of the universe (!)

» High dimensional phenomenon, when d is large enough,
posterior is too concentrated around its mean

Zhang and Combes, 2021, "On the suboptimality of thompson sampling in high
dimensions"
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Mismatched sampling paradox

Consider a problem with Bernoulli rewards and parameters in [0, 1]¢.

» Learner 1 knows the rewards distribution and the support [0, 1]¢,
uses a uniform (or Jeffrey’s) prior over [0, 1]¢ and Bernoulli
likelihood (B-CTS)

» Learner 2 does not know the rewards distribution and the support
[0,1]%, uses a Gaussian prior and Gaussian likelihood over R?
and a boost (BG-CTYS)

Paradox: Learner 1 performs exponentially worse than Learner 2

Zhang and Combes, 2024, "Thompson sampling for combinatorial bandits:
polynomial regret and mismatched sampling paradox"
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Performance comparison between Thompson Sampling and the
Boosted Gaussian Thompson Sampling and ESCB.
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Some reflections about sampling

» Sampling algorithms are fine, but posterior sampling sometimes
does not work

» Putting mass outside of the parameter space can make things
exponentially better (?!?)

» The Bayesian rationale of predicting using the posterior
distribution is not universal for online problems

» Open problem: is there a simple rationale for designing efficient
sampling algorithms for online problems ?

Zhang and Combes, 2024, "Thompson sampling for combinatorial bandits:

polynomial regret and mismatched sampling paradox"
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Thank you for your attention !

Paper here
https://arxiv.org/abs/2410.05441

af

Code here
https://github.com/RaymZhang/CTS-Mismatched-Paradox
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https://arxiv.org/abs/2410.05441
https://github.com/RaymZhang/CTS-Mismatched-Paradox

