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Combinatorial bandits (10’)
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Combinatorial semi-bandits

I A learner selects decision A ∈ A ⊂ {0, 1}d at time t ∈ {1, ..., T}
I She obtains reward A>X(t) with (X(t))t i.i.d. with mean µ? ∈ Rd

and independent entries
I She observes A(t)� X(t) = (Ai(t)Xi(t))1≤i≤d

I Goal: minimize regret

R(T) = max
A∈A

E

[
T∑

t=1

A(t)>X(t)

]
︸ ︷︷ ︸

oracle

−E

[
T∑

t=1

A(t)>X(t)

]
︸ ︷︷ ︸

your algorithm

.

I Size m = maxA∈A ‖A‖1, gap ∆(A) = (maxa∈A A>µ?)− A>µ? .

Cesa-Bianchi and Lugosi, 2011, "Combinatorial bandits"
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Optimistic algorithms 1: CUCB

I Estimate of µ? at time t

µ̂i(t) =
1

Ni(t)

∑
s<t

Ai(s)Xi(s) with Ni(t) =
∑
s<t

Ai(s)

I Optimistic algorithm, extension of UCB1, select

A(t) ∈ argmax
A∈A

[
d∑

i=1

Aiµ̂i(t) + Ai

√
2 ln t
Ni(t)

]

I Implementable by linear programming over X

Theorem (Kveton et al, 2014)

The regret of CUCB verifies R(T) ≤ C1dm lnT/∆min with C1 a
universal constant.

Kveton, Wen, Ashkan and Szepesvari, 2014, "Tight regret bounds for stochastic
combinatorial semi-bandits"
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Optimistic algorithms 2: ESCB

I Same idea as CUCB, with tighter confidence bounds

A(t) ∈ argmax
A∈A

 d∑
i=1

Aiµ̂i(t) +

√√√√ d∑
i=1

Ai
2 ln t
Ni(t)


I Can be NP-Hard to implement, even if linear programming over

X is polynomial

Theorem (Degenne et al, 2016)

The regret of ESCB verifies
R(T) ≤ C2d(lnm)2 lnT/∆min + P2(m, d, 1/∆min) with C2 a
universal constant and P2 a polynomial.

Combes, Lelarge, Proutiere and Talebi, 2015, "Combinatorial bandits revisited"
Degenne and Perchet, 2016, "Combinatorial semi-bandit with known

covariance"
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Sampling algorithms: CTS

I Observations up to time t, Y(t) = (A(s)� X(t))s<t, prior pµ on
µ?

I Posterior sampling algorithm, select decision

A(t) ∈ argmax
A∈X

(
A>θ(t)

)
with θ(t) ∼ pµ|Y(t)

I Example 1: (B-CTS) Bernoulli rewards and uniform priors, then

θi(t) ∼ Beta
(

Ni(t)(1 − θ̂i(t)),Nx(t)θ̂i(t)
)

with independent entries.

Theorem (Perrault et al, 2012)

The regret of B-CTS verifies
R(T) ≤ C3d(lnm)2 lnT/∆min + Q3(m, d, 1/∆min) with C3 a
universal constant and Q growing at least exponentially in m, d.

Perrault, Boursier, Valko and Perchet, 2020, "Statistical efficiency of thompson
sampling for combinatorial semi-bandits"
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Sampling algorithms: CTS

I Example 2: (G-CTS) Gaussian rewards and gaussian priors, then

A(t) ∈ argmax
A∈A

(
A>θ(t)

)
with θ(t) ∼ N(µ̂(t), 2V(t))

V(t) = diag
(

1
N1(t)

, ...,
1

Nd(t)

)

Perrault, Boursier, Valko and Perchet, 2020, "Statistical efficiency of thompson
sampling for combinatorial semi-bandits"
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The BG-CTS Algorithm (5’)
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BG-CTS algorithm

I Sampling algorithm

A(t) ∈ argmax
(

A>θ(t)
)

with θ(t) ∼ N(µ̂(t), 2g(t)V(t))

V(t) = diag
(

1
N1(t)

, ...,
1

Nd(t)

)

I Exploration boost

g(t) = (1 + λ)
ln t + (m + 2) ln ln t + (m/2) ln(1 + e/λ)

ln t

I Similar to G-CTS for Gaussian rewards with a well chosen boost
I Implementable by linear programming over X

Zhang and Combes, 2024, "Thompson sampling for combinatorial bandits:
polynomial regret and mismatched sampling paradox"
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Regret and complexity of BG-CTS

Theorem (Zhang et al, 2024)

Consider 1-subgaussian rewards. The regret of BG-CTS verifies
R(T) ≤ C4d(lnm) ln T/∆min + P4(m, d, 1/∆min) with C4 a
universal constant and P4 a polynomial.

I Valid for Gaussian, Bernoulli, bounded etc.
I If linear programming over X is polynomial then polynomial

complexity
I Best known polynomial (complexity, regret) algorithm for

asymptotic regret for general action set.
I Leads to an interesting paradox ...

Zhang and Combes, 2024, "Thompson sampling for combinatorial bandits:
polynomial regret and mismatched sampling paradox"
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Rationale: self normalized concentration inequalities

I Why is the "correct" confidence boost g(t) ?
I Self-normalized concentration inequality, choose g(t) such that

P

(
sup
s≤t

|A>(µ̂(s)− µ?)|√
A>V(s)A

≥
√

2 ln(t)g(t)

)
≈ 1

t(ln t)2

I The boost insure that : Thanks to this boost the proof relies on
showing that with high probability :

∀t ∈ [T],
t∑
s

1
{

A?>θ(s) > A?>µ?
}
> ctβ

with a constant β > 0.

Degenne and Perchet, 2016, "Combinatorial semi-bandit with known
covariance"

11 / 17



Mismatched sampling paradox (5’)
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Exponential regret of CTS

Theorem (Zhang et al, 2021)

Consider Bernoulli rewards. For any d there exists at least one θ and
X such that the regret of B-CTS is greater than that of random choice
for all t ≤ T0(d) with T0 growing at least exponentially in d. Also,
B-CTS is not minimax optimal.

I CTS is too greedy, and can get "stuck" for exponentially long
I For d = 20, T0(d) is greater than the age of the universe (!)
I High dimensional phenomenon, when d is large enough,

posterior is too concentrated around its mean

Zhang and Combes, 2021, "On the suboptimality of thompson sampling in high
dimensions"
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Mismatched sampling paradox

Consider a problem with Bernoulli rewards and parameters in [0, 1]d.
I Learner 1 knows the rewards distribution and the support [0, 1]d,

uses a uniform (or Jeffrey’s) prior over [0, 1]d and Bernoulli
likelihood (B-CTS)

I Learner 2 does not know the rewards distribution and the support
[0, 1]d, uses a Gaussian prior and Gaussian likelihood over Rd

and a boost (BG-CTS)

Paradox: Learner 1 performs exponentially worse than Learner 2

Zhang and Combes, 2024, "Thompson sampling for combinatorial bandits:
polynomial regret and mismatched sampling paradox"
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Performance comparison between Thompson Sampling and the
Boosted Gaussian Thompson Sampling and ESCB.

(a) Average regret over time (b) Average final regret as a function of m
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Some reflections about sampling

I Sampling algorithms are fine, but posterior sampling sometimes
does not work

I Putting mass outside of the parameter space can make things
exponentially better (?!?)

I The Bayesian rationale of predicting using the posterior
distribution is not universal for online problems

I Open problem: is there a simple rationale for designing efficient
sampling algorithms for online problems ?

Zhang and Combes, 2024, "Thompson sampling for combinatorial bandits:
polynomial regret and mismatched sampling paradox"
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Thank you for your attention !
Paper here
https://arxiv.org/abs/2410.05441

Code here
https://github.com/RaymZhang/CTS-Mismatched-Paradox
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