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• 𝐶 classes of trafic flows.
• 𝑁 mutually exclusive service options/modes.
• Input-queued system.
• Real-world examples : channel/frequency selection in wireless communications 

(e.g. WiFi networks or cognitive radio systems), …
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• Time slotted operation.
• The number of jobs that arrive per class is independent across time slots.
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Each time slot,
• a single service mode/option can be selected,
• when service mode/option 𝑠 is selected in time slot 𝑡, (up to) 𝑅𝑐,𝑠(𝑡) class-𝑐 jobs 

will be served
• neither realizations nor statistics of 𝑅𝑐,𝑠(𝑡) are known to scheduling agent 
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Scheduling agent :
• observes the global state of the queues,
• can infer service rates 𝑅𝑐,𝑠(𝑡) from evolution of queue lengths, but does not have 

any advance knowledge of realizations or underlying statistics 
in stark contrast to conventional assumptions.
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Objective: 
Design scheduling algorithm that

• achieves maximum stability (throughput optimality), and 
• provides (near-)optimal response times.
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For analysis purposes, we assume that 
• the number of jobs that arrive per time slot and class ~ Geometric with mean 𝜆𝑐 for 

class 𝑐.
• the number of served jobs of class 𝑐 at service option 𝑠 ~ Geometric with mean 𝜇𝑠,𝑐.
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Stability region:  Given the set of mean arrival rates 𝜆1, 𝜆2, … , 𝜆𝐶 and mean 

service rates 𝜇𝑠 = 𝜇𝑠,1, 𝜇𝑠,2, … , 𝜇𝑠,𝐶 for service option 𝑠. There exists a vector 

𝜆1, 𝜆2, … , 𝜆𝐶 ∈ 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝜇1, 𝜇2, … , 𝜇𝑁
such that 𝜆1, 𝜆2, … , 𝜆𝐶 < 𝜆1, 𝜆2, … , 𝜆𝐶 component-wise.
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The above stability condition …

• is necessary for all algorithms that do not have advance knowledge of the 
realizations of the service rates 𝑅𝑐,𝑠(𝑡) and 

• sufficient for the algorithm that we will propose.

maximum stability for our algorithm. 

The above stability condition …
• is not necessary in case of scheduling algorithms that do have advance 

knowledge of the realizations of service rates (channel-aware, `opportunistic’).

Stability region:  Given the set of mean arrival rates 𝜆1, 𝜆2, … , 𝜆𝐶 and mean 

service rates 𝜇𝑠 = 𝜇𝑠,1, 𝜇𝑠,2, … , 𝜇𝑠,𝐶 for service option 𝑠. There exists a vector 

𝜆1, 𝜆2, … , 𝜆𝐶 ∈ 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝜇1, 𝜇2, … , 𝜇𝑁
such that 𝜆1, 𝜆2, … , 𝜆𝐶 < 𝜆1, 𝜆2, … , 𝜆𝐶 component-wise.
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Proposition :  Consider the system with a single traffic class and 𝑁 service options 
with service rates 𝜇𝑠 for service option 𝑠. The system is stable if the following holds:

𝜆1 < max{𝜇1, 𝜇2, … , 𝜇𝑁}.
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Proposition :  Consider the system with a single traffic class and 𝑁 service options 
with service rates 𝜇𝑠 for service option 𝑠. The system is stable if the following holds:

𝜆1 < max{𝜇1, 𝜇2, … , 𝜇𝑁}.

Algorithm : 
• 𝑄 𝑡 = the number of jobs in queue at time 𝑡 with

𝑄 𝑡 = 𝑄 𝑡 − 1 + 𝐴 𝑡 − 𝑅𝑆(𝑡) 𝑡 ,

and 𝐴 𝑡 and 𝑅𝑆(𝑡) 𝑡 , number of arrivals and departures when the service 

option is 𝑆 𝑡 .

• Fix 𝑍 0 = 𝑄 0 the threshold value : for every 𝑡 > 0:

• If 𝑍 𝑡 − 1 ≥ 𝑄 𝑡 − 1 ∶
𝑍 𝑡 = 𝑍 𝑡 − 1 and 𝑆 𝑡 = 𝑆 𝑡 − 1 .

• If 𝑍 𝑡 − 1 < 𝑄 𝑡 − 1 or Q(t) = 0:  

𝑍 𝑡 =
𝑍 𝑡−1

2
and 𝑆 𝑡 ~𝑈𝑛𝑖𝑓 𝑠𝑒𝑟𝑣. 𝑜𝑝𝑡
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Challenges in the stochastic process:  

• The number of times to sample a 
feasible service option with ‘good’ 
trajectory is unbounded, as well as 
the amount that the threshold value 
increases. 

Improvement in the fluid limit:  

• Vanish in the limit. 

Challenges in fluid limit:  

• Even if the fluid hits 0 once, then will 
increase again, but this is bounded. 

stochastic
‘fluid’

𝑞1(𝑡)𝑄1(𝑡)

𝑍(𝑡)

𝑧(𝑡)

𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒



4. STABILITY REGION TWO CLASSES

15

Proposition :  Consider the system with a single traffic class with arrival rates 
𝜆1, 𝜆2 , and 𝑁 service options with service rates 𝜇𝑠 = (𝜇𝑠,1, 𝜇𝑠,2) for service option 
𝑠. There exists a vector 

𝜆1, 𝜆2 ∈ 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝜇1, 𝜇2, … , 𝜇𝑁
such that 𝜆1, 𝜆2 < 𝜆1, 𝜆2 component-wise.
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Queue dynamics :  

• 𝑄𝑐 𝑡 = the number of class 𝑐 jobs in queue at time 𝑡 with
𝑄𝑐 𝑡 = 𝑄𝑐 𝑡 − 1 + 𝐴𝑐 𝑡 − 𝑅𝑐,𝑆(𝑡) 𝑡 ,

and 𝐴𝑐 𝑡 and 𝑅𝑐,𝑆(𝑡) 𝑡 , number of arrivals and departures of class 𝑐 when 

the service option is 𝑆 𝑡 .

• 𝐿 𝑡 = σ𝑐=1
𝐶 𝑄𝑐

2 𝑡 .

• 𝑍 𝑡 = the threshold value at time 𝑡, with fix 𝑍 0 = 𝐿 0 = σ𝑐=1
𝐶 𝑄𝑐

2 0 .

• (𝑋1 𝑡 , 𝑋2 𝑡 ) = the queue length per class of the threshold value a time 𝑡, 
with fix (𝑋1 0 , 𝑋2 0 ) = (𝑄1 0 , 𝑄2 0 ).



4. THRESHOLD BASED SCHEDULING ALGORITHM

17

Algorithm :  
• At each time slot 𝑡 > 1:

• If 𝑍 𝑡 − 1 ≥ 𝐿 𝑡 :

keep going : 𝑍 𝑡 = 𝑍 𝑡 − 1 , 
(𝑋1 𝑡 , 𝑋2 𝑡 ) = (𝑋1 𝑡 − 1 , 𝑋2 𝑡 − 1 ),
𝑆 𝑡 = 𝑆 𝑡 − 1 .

• If 𝑍 𝑡 − 1 < 𝐿 𝑡 : 
Update: 𝑍 𝑡 = 𝐿(𝑡)

(𝑋1 𝑡 , 𝑋2 𝑡 ) = (𝑄1 𝑡 , 𝑄2 𝑡 )
𝑆 𝑡 ~𝑈𝑛𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑜𝑝𝑡𝑖𝑜𝑛

- fix 𝜎small lower bound for 𝑍 𝑡 .

• If 𝑚𝑖𝑛𝑐∈𝐶 𝑄𝑐 𝑡 = 0 and 𝑚𝑎𝑥𝑐∈𝐶 𝑄𝑐 𝑡 ≥ 𝑋 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐶 𝑄𝑐 𝑡 𝑡 :

Update: 𝑍 𝑡 = 𝐿(𝑡)
(𝑋1 𝑡 , 𝑋2 𝑡 ) = (𝑄1 𝑡 , 𝑄2 𝑡 )
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Algorithm :  
• At each time slot 𝑡 > 1:

• If 𝑍 𝑡 − 1 ≥ 𝐿 𝑡 :

keep going : 𝑍 𝑡 = 𝑍 𝑡 − 1 , 
(𝑋1 𝑡 , 𝑋2 𝑡 ) = (𝑋1 𝑡 − 1 , 𝑋2 𝑡 − 1 ),
𝑆 𝑡 = 𝑆 𝑡 − 1 .

• If 𝑍 𝑡 − 1 < 𝐿 𝑡 : 
Update: 𝑍 𝑡 = 𝐿(𝑡)

(𝑋1 𝑡 , 𝑋2 𝑡 ) = (𝑄1 𝑡 , 𝑄2 𝑡 )
𝑆 𝑡 ~𝑈𝑛𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑜𝑝𝑡𝑖𝑜𝑛

- fix 𝜎small lower bound for 𝑍 𝑡 .

• 𝑚𝑖𝑛𝑐∈𝐶 𝑄𝑐 𝑡 = 0 and 𝑚𝑎𝑥𝑐∈𝐶 𝑄𝑐 𝑡 ≥ 𝑋 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐶 𝑄𝑐 𝑡 𝑡 :

Update: 𝑍 𝑡 = 𝐿(𝑡)
(𝑋1 𝑡 , 𝑋2 𝑡 ) = (𝑄1 𝑡 , 𝑄2 𝑡 )
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Example : 𝐶 = 2 and 𝑁 = 4
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Example : 𝐶 = 2 and 𝑁 = 4
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Challenges in the stochastic process:  

• The number of times to sample a 
feasible service option with ‘good’ 
trajectory is unbounded, as well as 
the amount that the threshold value 
increases. 

Improvement in the fluid limit:  

• Vanish in the limit. 
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Additional challenges in the fluid:

• The feasible service option is 
dependent of the per class 
number of jobs.

• An unpredictable number of 
‘good’ trajectories before the 
one where z 𝑡 is reduced.

BUT : 

• There is at least one feasible 
service option per pair 𝑞1, 𝑞2 .

• The fluid limit lives inside the area 
determined by z 𝑡 , and this 
eventually shrinks.
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Conclusions :  

• We provide an algorithm that is maximally stable, for system that do not have any 
advance knowledge of the service rates.

• However, `lazy' scheduling by randomly resampling without really acting as long 
as things seem to move in the right direction. 

Future work :

• Improve (response time) performance, by using an active learning algorithm that 
learns to sample the best combination of service options.
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THANK YOU!
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class 1

class  2

1

2

𝜇1,1
𝜇1,2

𝜇2,1
𝜇2,2

X-model*: 2 traffic classes with 2 service options where either:
• server 1 (server 2) serves both classes simultaneously or,
• server 1 and server 2 both serve the same class

* Yuan Zhong, Instability and stability of parameter agnostic policies in parallel server 
systems, Performance 2023.
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X-model*: 2 traffic classes with 2 service options where either:
• server 1 (server 2) serves both classes simultaneously or,
• server 1 and server 2 both serve the same class
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