International Conference on Networks, Games, Control and Optimization (NetGCoop)

The next edition will be held in Bilbao from 08/10/2025 to 10/10/2025

December 3, 2024

200

Save the date!

More information soon on the web site: https://netgcoop2025.univ-avignon.fr/

Stability and performance of multi-class queueing systems with unknown service rates: A scheduling-based approach

Elene ANTON (Université de Pau et des Pays de l'Adour - UPPA) Joint work with Sem Borst (TU/e)

13ème Atelier en Évaluation des Performances, 2-4 Décembre 2024, Toulouse, France

- *C* classes of trafic flows.
- *N* mutually exclusive service options/modes.
- Input-queued system.
- Real-world examples : channel/frequency selection in wireless communications (e.g. WiFi networks or cognitive radio systems), ...

- Time slotted operation.
- The number of jobs that arrive per class is independent across time slots.

Each time slot,

- a single service mode/option can be selected,
- when service mode/option s is selected in time slot t, (up to) $R_{c,s}(t)$ class-c jobs will be served
- neither realizations nor statistics of $R_{c,s}(t)$ are known to scheduling agent

Scheduling agent :

- observes the global state of the queues,
- can infer service rates $R_{c,s}(t)$ from evolution of queue lengths, but does not have any advance knowledge of realizations or underlying statistics
 - in stark contrast to conventional assumptions.

Objective:

Design scheduling algorithm that

- achieves maximum stability (throughput optimality), and
- provides (near-)optimal response times.

For analysis purposes, we assume that

- the number of jobs that arrive per time slot and class ~ Geometric with mean λ_c for class c.
- the number of served jobs of class c at service option $s \sim$ Geometric with mean $\mu_{s,c}$.

Stability region: Given the set of mean arrival rates $(\lambda_1, \lambda_2, ..., \lambda_C)$ and mean service rates $\mu_s = (\mu_{s,1}, \mu_{s,2}, ..., \mu_{s,C})$ for service option s. There exists a vector $(\overline{\lambda_1}, \overline{\lambda_2}, ..., \overline{\lambda_C}) \in convex hull (\mu_1, \mu_2, ..., \mu_N)$ such that $(\lambda_1, \lambda_2, ..., \lambda_C) < (\overline{\lambda_1}, \overline{\lambda_2}, ..., \overline{\lambda_C})$ component-wise.

Stability region: Given the set of mean arrival rates $(\lambda_1, \lambda_2, ..., \lambda_C)$ and mean service rates $\mu_s = (\mu_{s,1}, \mu_{s,2}, ..., \mu_{s,C})$ for service option s. There exists a vector $(\overline{\lambda_1}, \overline{\lambda_2}, ..., \overline{\lambda_C}) \in convex hull (\mu_1, \mu_2, ..., \mu_N)$ such that $(\lambda_1, \lambda_2, ..., \lambda_C) < (\overline{\lambda_1}, \overline{\lambda_2}, ..., \overline{\lambda_C})$ component-wise.

The above stability condition ...

- is **necessary** for all algorithms that do not have advance knowledge of the realizations of the service rates $R_{c,s}(t)$ and
- **sufficient** for the algorithm that we will propose.

maximum stability for our algorithm.

The above stability condition ...

 is not necessary in case of scheduling algorithms that do have advance knowledge of the realizations of service rates (channel-aware, `opportunistic').

Proposition : Consider the system with a single traffic class and N service options with service rates μ_s for service option s. The system is stable if the following holds:

 $\lambda_1 < \max\{\mu_1, \mu_2, \dots, \mu_N\}.$

Proposition : Consider the system with a single traffic class and N service options with service rates μ_s for service option s. The system is stable if the following holds:

 $\lambda_1 < \max\{\mu_1, \mu_2, \dots, \mu_N\}.$

Algorithm :

• Q(t) = the number of jobs in queue at time t with

 $Q(t) = Q(t-1) + A(t) - R_{S(t)}(t),$

and A(t) and $R_{S(t)}(t)$, number of arrivals and departures when the service option is S(t).

- Fix Z(0) = Q(0) the threshold value : for every t > 0:
 - If $Z(t-1) \ge Q(t-1)$: Z(t) = Z(t-1) and S(t) = S(t-1).
 - If Z(t-1) < Q(t-1) or Q(t) = 0: $Z(t) = \frac{Z(t-1)}{2}$ and $S(t) \sim Unif(serv.opt)$

3. STABILITY REGION SINGLE CLASS

3. STABILITY REGION SINGLE CLASS

14

Proposition : Consider the system with a single traffic class with arrival rates (λ_1, λ_2) , and N service options with service rates $\mu_s = (\mu_{s,1}, \mu_{s,2})$ for service option s. There exists a vector

 $(\overline{\lambda_1}, \overline{\lambda_2}) \in convex hull (\mu_1, \mu_2, ..., \mu_N)$ such that $(\lambda_1, \lambda_2) < (\overline{\lambda_1}, \overline{\lambda_2})$ component-wise.

Queue dynamics :

• $Q_c(t)$ = the number of class c jobs in queue at time t with $Q_c(t) = Q_c(t-1) + A_c(t) - R_{c,S(t)}(t)$,

and $A_c(t)$ and $R_{c,S(t)}(t)$, number of arrivals and departures of class c when the service option is S(t).

- $L(t) = \sum_{c=1}^{C} Q_c^2(t).$
- Z(t) = the threshold value at time t, with fix $Z(0) = L(0) = \sum_{c=1}^{C} Q_c^2(0)$.
- $(X_1(t), X_2(t)) =$ the queue length per class of the threshold value a time t, with fix $(X_1(0), X_2(0)) = (Q_1(0), Q_2(0))$.

4. THRESHOLD BASED SCHEDULING ALGORITHM

Algorithm :

- At each time slot t > 1:
 - If $Z(t-1) \ge L(t)$:

keep going : Z(t) = Z(t - 1), $(X_1(t), X_2(t)) = (X_1(t - 1), X_2(t - 1)),$ S(t) = S(t - 1).

• If
$$Z(t-1) < L(t)$$
:
Update: $Z(t) = L(t)$
 $(X_1(t), X_2(t)) = (Q_1(t), Q_2(t))$
 $S(t) \sim Unif(service option)$

- fix σ small lower bound for Z(t).

• If $min_{c \in C} \{Q_c(t)\} = 0$ and $max_{c \in C} \{Q_c(t)\} \ge X_{argmax_{c \in C}} \{Q_c(t)\}(t) :$ Update: Z(t) = L(t) $(X_1(t), X_2(t)) = (Q_1(t), Q_2(t))$

4. THRESHOLD BASED SCHEDULING ALGORITHM

Algorithm :

• At each time slot t > 1:

• If
$$Z(t-1) \ge L(t)$$
:

keep going : Z(t) = Z(t - 1), $(X_1(t), X_2(t)) = (X_1(t - 1), X_2(t - 1)),$ S(t) = S(t - 1).

• If
$$Z(t-1) < L(t)$$
:
Update: $Z(t) = L(t)$
 $(X_1(t), X_2(t)) = (Q_1(t), Q_2(t))$
 $S(t) \sim Unif(service option)$

- fix σ small lower bound for Z(t).

• $min_{c \in C} \{Q_c(t)\} = 0 \text{ and } max_{c \in C} \{Q_c(t)\} \ge X_{argmax_{c \in C}} \{Q_c(t)\}(t) :$ Update: Z(t) = L(t) $(X_1(t), X_2(t)) = (Q_1(t), Q_2(t))$

4. THRESHOLD BASED SCHEDULING ALGORITHM : EXP

4. THRESHOLD BASED SCHEDULING ALGORITHM : EXP

Example : C = 2 and N = 4 $S_1 \qquad \mu_{s_1,1} = 4, \\ \mu_{s_1,2} = 1$ $\lambda_1 = 3$ $\lambda_2 = 2$ Sch. agent $S_2 \qquad \mu_{s_2,1} = 1, \\ \mu_{s_2,2} = 1$ $S_3 \qquad \mu_{s_3,1} = 2, \\ \mu_{s_3,2} = 4$ $S_4 \qquad \mu_{s_4,1} = 2, \\ \mu_{s_4,2} = 1$

	Se	Sec. of service options :													
time															
	0						6 - 12		3	14	15	16	17		
	2	2	4	3	4	4	1	2	ļ	3	3	2	2		
18			19	20	21 2		22223- 27								
	2		2	1	2		2 1								

4. STABILITY REGION TWO CLASSES

Challenges in the stochastic process:

 The number of times to sample a feasible service option with 'good' trajectory is unbounded, as well as the amount that the threshold value increases.

Improvement in the fluid limit:

Vanish in the limit.

4. STABILITY REGION TWO CLASSES

Conclusions :

- We provide an algorithm that is maximally stable, for system that do not have any advance knowledge of the service rates.
- However, `lazy' scheduling by randomly resampling without really acting as long as things seem to move in the right direction.

Future work :

• Improve (response time) performance, by using an active learning algorithm that learns to sample the best combination of service options.

5. CONCLUSION AND FUTURE RESEARCH

THANK YOU!

X-model*: 2 traffic classes with 2 service options where either:

- server 1 (server 2) serves both classes simultaneously or,
- server 1 and server 2 both serve the same class

* Yuan Zhong, Instability and stability of parameter agnostic policies in parallel server systems, Performance 2023.

- server 1 (server 2) serves both classes simultaneously or,
- server 1 and server 2 both serve the same class

- server 1 (server 2) serves both classes simultaneously or,
- server 1 and server 2 both serve the same class

- server 1 (server 2) serves both classes simultaneously or,
- server 1 and server 2 both serve the same class

- server 1 (server 2) serves both classes simultaneously or,
- server 1 and server 2 both serve the same class

- server 1 (server 2) serves both classes simultaneously or,
- server 1 and server 2 both serve the same class

