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Load Balancing and Auto-scaling

Challenge: Design algorithms that achieve low wait and energy consumption

Control
𝜆N

Auto-scaling: 
Scale up/down the net service capacity  in 
response to the current load

Pool of OFF servers

N

1

K

Pool of ON servers

Load balancing:
Dispatch jobs to ON servers

K+1



Some Examples

Supermarket checkout lines Call centers Data centers

In France, 10% of the electricity produced is consumed 
only to meet the needs of data centres 
[source: https://corporate.ovhcloud.com]

https://corporate.ovhcloud.com/en/newsroom/news/distiller-research-program/


Serverless Computing

In the queueing literature, load balancing and auto-scaling have been mostly studied 
independently of each other (timescale separation assumption)
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In the queueing literature, load balancing and auto-scaling have been mostly studied 
independently of each other (timescale separation assumption)

In serverless computing:

❖ a server is a software function that

➢ can be flexibly instantiated in milliseconds (a time window that is comparable with 
the magnitude of job inter-arrival and service times)

➢ No timescale separation 

❖ Autoscaling mechanisms are extremely reactive and the decision of turning servers on 
are based on instantaneous observations of the current system state rather than on the 
long-run equilibrium behavior.



Serverless Computing: Architectures
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Existing architectures: centralized or decentralized / synchronous or asynchronous

● Synchronous: Scale-up decisions taken at job arrival times (coldstarts)

● Asynchronous: Scale-up decisions taken independently of the arrival process

Scale-down rule: turn a server off if that server remains idle for a certain amount of time



Serverless Computing: Platforms
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Load balancing

AWS Lambda, Azure Functions, IBM 
Cloud Functions, Apache OpenWhisk

⇒ several research works

?
[Borst et al. 2017, Goldsztajn et al. 

2018, Clausen et al. 2021]

?
Knative (Google Cloud Run)

`

[Anselmi 2024]
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This talk



Asynchronous Load Balancing and Auto-scaling

Challenge 1
To build a model to evaluate the performance of Knative 
● User-defined scale-up rules
● Power-of-d and JoinBelowThreshold-d (JBT-d)

Challenge 2
Asymptotic Delay and Relative Energy Optimality (DREO), ie,
● the user-perceived waiting time and the relative energy wastage induced by idle servers 

vanish as N→∞
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Markov Model
Microscopic description
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f(x) and g(x) are the load-balancing and auto-scaling rules

λ N is the job arrival rate
α N is the rate of the auto-scaling clock
β and γ are the server initialization and expiration rates

Just one server:



Markov Model
Microscopic description

f(x) and g(x) are the load-balancing and auto-scaling rules

λ N is the job arrival rate
α N is the rate of the auto-scaling clock
β and γ are the server initialization and expiration rates
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Simple example
f(x) =1/(NxON ), random dispatching
g(x) = constant

β = ∞
⇒ challenging stability region!

Just one server:



Markov Model
Macroscopic description

Letting the proportion of servers with i  jobs
and in state j denoted by

The Markov chain of interest has rates

Power-of-d : JBT-d :



Fluid Model and Connection with the Markov Model
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Fluid Model and Connection with the Markov Model

Waste of 
resources!



Optimal Design

Goal:  to design scaling rules ensuring that a global attractor exists and is given by x*  with

(well,                                                 )

In x*, asymptotic “delay and relative energy optimality” (DREO)
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Goal:  to design scaling rules ensuring that a global attractor exists and is given by x*  with

(well,                                                 )

In x*, asymptotic “delay and relative energy optimality” (DREO)

Theorem 2 (rephrased). DREO is obtained only by using Join-the-Idle-Queue and a non-zero 
scale-up rate iff 𝜆 > “overall rate at which servers become idle-on“.



Empirical Comparison: Synchronous vs Asynchronous

We compare:
● our asynchronous combination of JIQ and Rate-Idle (ALBA), ie,                                                       ,

with
● TABS [Borst et al., 2017], which is synchronous, and achieves DREO.

α N (rate of the auto-scaling clock) set to make both scale-up rates equal 
(scale-up rate = number of server initialization signals divided by time horizon)

Our metrics:
● the empirical probability of waiting
● the empirical energy consumption



Empirical Comparison: Synchronous vs Asynchronous

Scale-up rate Scale-up rate

Possible explanation. Asynchronous is “proactive”: jobs do not necessarily need to wait any 
time a scale-up decision is taken.


