Asynchronous Load Balancing and Auto-scaling: Mean-field Limit and Optimal Design

Jonatha ANSELMI, Inria

13ème Atelier en Évaluation des Performances - IRIT - Toulouse December 3, 2024

[Based on: J. Anselmi *"Asynchronous Load Balancing and Auto-scaling: Mean-field Limit and Optimal Design"*, IEEE/ACM Transactions on Networking, 2024]

Load Balancing and Auto-scaling

Challenge: Design algorithms that achieve low wait and energy consumption

Some Examples

Supermarket checkout lines and Call centers and Data centers and Data centers of the Data centers

In France, 10% of the electricity produced is consumed only to meet the needs of data centres [source: [https://corporate.ovhcloud.com\]](https://corporate.ovhcloud.com/en/newsroom/news/distiller-research-program/)

Serverless Computing

In the queueing literature, load balancing and auto-scaling have been mostly studied independently of each other (timescale separation assumption)

Serverless Computing

In the queueing literature, load balancing and auto-scaling have been mostly studied independently of each other (timescale separation assumption)

In serverless computing:

- ❖ a server is a software function that
	- \triangleright can be flexibly instantiated in milliseconds (a time window that is comparable with the magnitude of job inter-arrival and service times)
	- ➢ **No timescale separation**

❖ Autoscaling mechanisms are extremely reactive and the decision of turning servers on are based on *instantaneous observations of the current system state* rather than on the long-run equilibrium behavior.

Serverless Computing: Architectures

Existing architectures: centralized or decentralized / synchronous or asynchronous

- **Synchronous:** Scale-up decisions taken at job arrival times (coldstarts)
- **Asynchronous**: Scale-up decisions taken independently of the arrival process

Scale-down rule: turn a server off if that server remains idle for a certain amount of time

Serverless Computing: Platforms

Asynchronous Load Balancing and Auto-scaling

Challenge 1

To build a model to evaluate the performance of Knative

- User-defined scale-up rules
- Power-of-*d* and JoinBelowThreshold-*d* (JBT-d)

Challenge 2

Asymptotic Delay and Relative Energy Optimality (DREO), ie,

● the user-perceived waiting time and the relative energy wastage induced by idle servers vanish as *N*→∞

Markov Model Microscopic description

Just one server:

f(x) and *g(x)* are the load-balancing and auto-scaling rules

λN is the job arrival rate *αN* is the rate of the auto-scaling clock *β* and *γ* are the server initialization and expiration rates

Markov Model

Macroscopic description

Letting the proportion of servers with *i* jobs and in state *j* denoted by $X_{i,j}^{N}(t), i \geq 0, j \in \{OFF(0), INT(1), ON(2)\}\$ The Markov chain of interest has rates

 $x \mapsto x' := x + \frac{1}{N}(e_{i,2} - e_{i-1,2})$ with rate $\lambda N f_{i-1}(x)$ $x \mapsto x' := x + \frac{1}{N}(e_{i-1,2} - e_{i,2})$ with rate x_iN $x \mapsto x' := x + \frac{1}{N}(-e_{0,0}, e_{0,1})$ with rate αNg $x \mapsto x' := x + \frac{1}{N}(-e_{0,1}, e_{0,2})$ with rate $\beta x_{0,1}N$ $x \mapsto x' := x + \frac{1}{N}(e_{0,0} - e_{0,2})$ with rate $\gamma x_{0,2}N$

$$
\text{Power-of-d: } f_i(x) = \frac{y_i^d - y_{i+1}^d}{y_0^d}, \qquad \text{JBT-d: } f_i(x) = \frac{x_{i,2} \mathbb{I}_{\{\sum_{k=0}^d x_{k,2} = 0\}} + \frac{x_{i,2} \mathbb{I}_{\{\sum_{k=0}^d x_{k,2} > 0\}}}{y_0} \mathbb{I}_{\{i \leq d\}}
$$

Fluid Model and Connection with the Markoy Model

Definition 1. A continuous function $x(t): \mathbb{R}_+ \to S$ is said to be a fluid model (or fluid solution) if for almost all $t \in [0, \infty)$

$$
\dot{x}_{0,0} = \gamma x_{0,2} - \alpha g \mathbb{I}_{\{x_{0,0} > 0\}} - \gamma x_{0,2} \mathbb{I}_{\{x_{0,0} = 0, \gamma x_{0,2} \le \alpha g\}} \quad \text{(4a)}
$$

$$
\dot{x}_{0,1} = \alpha g \mathbb{I}_{\{x_{0,0} > 0\}} - \beta x_{0,1} + \gamma x_{0,2} \mathbb{I}_{\{x_{0,0} = 0, \gamma x_{0,2} \le \alpha g\}} \quad (4b)
$$

$$
\dot{x}_{0,2} = x_{1,2} - h_0(x) + \beta x_{0,1} - \gamma x_{0,2} \tag{4c}
$$

$$
\dot{x}_{i,2} = x_{i+1,2} \mathbb{I}_{\{i < B\}} - x_{i,2} + h_{i-1}(x) - h_i(x),\tag{4d}
$$

where $g := g(x) : S \to [0,1]$, and $h_i(x) = \min\{\beta x_{0,1}, \lambda\}$ if $y_0 > 0$ and otherwise ($y_0 = 0$):

$$
h_i(x) = \lambda \, \frac{y_i^d - y_{i+1}^d}{y_0^d} \tag{5}
$$

if Power-of-d is applied and

$$
h_i(x) = \begin{cases} \lambda \frac{x_{i,2}}{\sum_{k=0}^d x_{k,2}} \mathbb{I}_{\{i \leq d\}}, & \text{if } \sum_{k=0}^d x_{k,2} > 0 \\ (\beta x_{0,1} + x_{d+1,2} \mathbb{I}_{\{i=d\}}) \mathbb{I}_{\{x_{d+1,2} + (d+1)\beta x_{0,1} \leq \lambda\}}, \\ & \text{if } \sum_{k=0}^d x_{k,2} = 0, \ i \leq d, \\ \frac{x_{i,2}}{y_0} (\lambda - x_{d+1,2} - (d+1)\beta x_{0,1})^+, \\ & \text{if } \sum_{k=0}^d x_{k,2} = 0, \ i > d, \end{cases}
$$
(6)

if JBT- d is applied.

Fluid Model and Connection with the Markov Model

Definition 1. A continuous function $x(t): \mathbb{R}_+ \to S$ is said to be a fluid model (or fluid solution) if for almost all $t \in [0, \infty)$

$$
\dot{x}_{0,0} = \gamma x_{0,2} - \alpha g \mathbb{I}_{\{x_{0,0} > 0\}} - \gamma x_{0,2} \mathbb{I}_{\{x_{0,0} = 0, \gamma x_{0,2} \le \alpha g\}} \quad \text{(4a)}
$$

$$
\dot{x}_{0,1} = \alpha g \mathbb{I}_{\{x_{0,0} > 0\}} - \beta x_{0,1} + \gamma x_{0,2} \mathbb{I}_{\{x_{0,0} = 0, \gamma x_{0,2} \le \alpha g\}} \tag{4b}
$$

$$
\dot{x}_{0,2} = x_{1,2} - h_0(x) + \beta x_{0,1} - \gamma x_{0,2} \tag{4c}
$$

$$
\dot{x}_{i,2} = x_{i+1,2} \mathbb{I}_{\{i < B\}} - x_{i,2} + h_{i-1}(x) - h_i(x),\tag{4d}
$$

where $g := g(x) : S \to [0,1]$, and $h_i(x) = \min\{\beta x_{0,1}, \lambda\}$ if $y_0 > 0$ and otherwise ($y_0 = 0$):

$$
h_i(x) = \lambda \frac{y_i^d - y_{i+1}^d}{y_0^d} \tag{5}
$$

if Power-of-d is applied and

$$
h_i(x) = \begin{cases} \lambda \frac{x_{i,2}}{\sum_{k=0}^d x_{k,2}} \mathbb{I}_{\{i \le d\}}, & \text{if } \sum_{k=0}^d x_{k,2} > 0 \\ (\beta x_{0,1} + x_{d+1,2} \mathbb{I}_{\{i=d\}}) \mathbb{I}_{\{x_{d+1,2} + (d+1)\beta x_{0,1} \le \lambda\}}, \\ & \text{if } \sum_{k=0}^d x_{k,2} = 0, i \le d, \\ \frac{x_{i,2}}{y_0} (\lambda - x_{d+1,2} - (d+1)\beta x_{0,1})^+, \\ & \text{if } \sum_{k=0}^d x_{k,2} = 0, i > d, \end{cases}
$$
(6)

if $IBT-d$ is applied.

Theorem 1. Let $T < \infty$, $x^{(0)} \in S_1$ and assume that $||X^N(0) - x^{(0)}||_w \rightarrow 0$ almost surely. Then, limit points of the stochastic process $(X^N(t))_{t\in[0,T]}$ exist and almost surely satisfy the conditions that define a fluid solution started at $x^{(0)}$.

Fluid Model and Connection with the Markov Model

Definition 1. A continuous function $x(t): \mathbb{R}_+ \to S$ is said to be a fluid model (or fluid solution) if for almost all $t \in [0, \infty)$

$$
\dot{x}_{0,0} = \gamma x_{0,2} - \alpha g \mathbb{I}_{\{x_{0,0} > 0\}} - \gamma x_{0,2} \mathbb{I}_{\{x_{0,0} = 0, \gamma x_{0,2} \le \alpha g\}} \quad \text{(4a)}
$$

$$
\dot{x}_{0,1} = \alpha g \mathbb{I}_{\{x_{0,0} > 0\}} - \beta x_{0,1} + \gamma x_{0,2} \mathbb{I}_{\{x_{0,0} = 0, \gamma x_{0,2} \le \alpha g\}} \tag{4b}
$$

$$
\dot{x}_{0,2} = x_{1,2} - h_0(x) + \beta x_{0,1} - \gamma x_{0,2} \tag{4c}
$$

$$
\dot{x}_{i,2} = x_{i+1,2} \mathbb{I}_{\{i < B\}} - x_{i,2} + h_{i-1}(x) - h_i(x),\tag{4d}
$$

where $g := g(x) : S \to [0,1]$, and $h_i(x) = \min\{\beta x_{0,1}, \lambda\}$ if $y_0 > 0$ and otherwise ($y_0 = 0$):

$$
h_i(x) = \lambda \frac{y_i^d - y_{i+1}^d}{y_0^d} \tag{5}
$$

if Power-of-d is applied and

$$
h_i(x) = \begin{cases} \lambda \frac{x_{i,2}}{\sum_{k=0}^d x_{k,2}} \mathbb{I}_{\{i \le d\}}, & \text{if } \sum_{k=0}^d x_{k,2} > 0 \\ (\beta x_{0,1} + x_{d+1,2} \mathbb{I}_{\{i=d\}}) \mathbb{I}_{\{x_{d+1,2} + (d+1)\beta x_{0,1} \le \lambda\}}, \\ & \text{if } \sum_{k=0}^d x_{k,2} = 0, i \le d, \\ \frac{x_{i,2}}{y_0} (\lambda - x_{d+1,2} - (d+1)\beta x_{0,1})^+, \\ & \text{if } \sum_{k=0}^d x_{k,2} = 0, i > d, \end{cases}
$$
(6)

if $IBT-d$ is applied.

Theorem 1. Let $T < \infty$, $x^{(0)} \in S_1$ and assume that $||X^N(0) - x^{(0)}||_w \rightarrow 0$ almost surely. Then, limit points of the stochastic process $(X^N(t))_{t\in[0,T]}$ exist and almost surely satisfy the conditions that define a fluid solution started at $x^{(0)}$.

Optimal Design

Goal: to design scaling rules ensuring that a global attractor exists and is given by *x** with

$$
x_{\text{OFF}}^{\star} = 1 - \lambda, \quad x_{1,\text{ON}}^{\star} = \lambda
$$

(well, $x_{0,0}^* = 1 - \lambda$, $x_{1,2}^* = \lambda$)

In *x**, asymptotic "delay and relative energy optimality" (DREO)

Optimal Design

Goal: to design scaling rules ensuring that a global attractor exists and is given by *x** with

$$
x_{\text{OFF}}^{\star} = 1 - \lambda, \quad x_{1,\text{ON}}^{\star} = \lambda
$$

(well, $x_{0,0}^* = 1 - \lambda$, $x_{1,2}^* = \lambda$)

In *x**, asymptotic "delay and relative energy optimality" (DREO)

THEOREM 2. Let $x(t)$ denote a fluid solution induced by JIQ and any auto-scaling rule $q(x)$ such that

$$
g(x) = 0
$$
 if and only if $x_{1,2} + \beta x_{0,1} \ge \lambda$.

Then, $\lim_{t\to\infty} ||x(t)-x^*||_w = 0$.

Theorem 2 (rephrased). DREO is obtained *only* by using Join-the-Idle-Queue and a non-zero scale-up rate iff λ > "overall rate at which servers become idle-on".

Empirical Comparison: Synchronous vs Asynchronous

We compare:

- our asynchronous combination of JIQ and *Rate-Idle* (ALBA), ie, $g(x) = \frac{1}{\lambda}(\lambda \beta x_{0,1} x_{1,2})^+$, with
- TABS [Borst et al., 2017], which is synchronous, and achieves DREO.

α N (rate of the auto-scaling clock) set to make both *scale-up rates* equal (*scale-up rate* = number of server initialization signals divided by time horizon)

Our metrics:

- the empirical probability of waiting
- the empirical energy consumption

$$
\mathcal{R}_{\text{Wait}} := \frac{p_{\text{Wait}}^{\text{ALBA}}}{p_{\text{Wait}}^{\text{TABS}}}, \quad \mathcal{R}_{\text{Energy}} := \frac{E^{\text{ALBA}}}{E^{\text{TABS}}}
$$

Empirical Comparison: Synchronous vs Asynchronous

Possible explanation. Asynchronous is "proactive": jobs do not necessarily need to wait any time a scale-up decision is taken.