
Asynchronous Load Balancing and Auto-scaling:
Mean-field Limit and Optimal Design
Jonatha ANSELMI, Inria

13ème Atelier en Évaluation des Performances - IRIT - Toulouse
December 3, 2024

[Based on: J. Anselmi “Asynchronous Load Balancing and Auto-scaling: Mean-field Limit and Optimal
Design”, IEEE/ACM Transactions on Networking, 2024]

Load Balancing and Auto-scaling

Challenge: Design algorithms that achieve low wait and energy consumption

Control
𝜆N

Auto-scaling:
Scale up/down the net service capacity in
response to the current load

Pool of OFF servers

N

1

K

Pool of ON servers

Load balancing:
Dispatch jobs to ON servers

K+1

Some Examples

Supermarket checkout lines Call centers Data centers

In France, 10% of the electricity produced is consumed
only to meet the needs of data centres
[source: https://corporate.ovhcloud.com]

https://corporate.ovhcloud.com/en/newsroom/news/distiller-research-program/

Serverless Computing

In the queueing literature, load balancing and auto-scaling have been mostly studied
independently of each other (timescale separation assumption)

Serverless Computing

In the queueing literature, load balancing and auto-scaling have been mostly studied
independently of each other (timescale separation assumption)

In serverless computing:

❖ a server is a software function that

➢ can be flexibly instantiated in milliseconds (a time window that is comparable with
the magnitude of job inter-arrival and service times)

➢ No timescale separation

❖ Autoscaling mechanisms are extremely reactive and the decision of turning servers on
are based on instantaneous observations of the current system state rather than on the
long-run equilibrium behavior.

Serverless Computing: Architectures

𝜆N

Pool of ON servers

Load balancing
𝜆N

Auto-scaling

N servers max

Pool of ON servers

Pool of INIT servers

Load balancing

Pool of OFF servers

Pool of INIT servers

Pool of OFF servers

Auto-scaling

N servers max

Existing architectures: centralized or decentralized / synchronous or asynchronous

● Synchronous: Scale-up decisions taken at job arrival times (coldstarts)

● Asynchronous: Scale-up decisions taken independently of the arrival process

Scale-down rule: turn a server off if that server remains idle for a certain amount of time

Serverless Computing: Platforms

𝜆N

Pool of ON servers

Load balancing
𝜆N

Auto-scaling

N servers max

Pool of ON servers

Pool of INIT servers

Load balancing

AWS Lambda, Azure Functions, IBM
Cloud Functions, Apache OpenWhisk

⇒ several research works

?
[Borst et al. 2017, Goldsztajn et al.

2018, Clausen et al. 2021]

?
Knative (Google Cloud Run)

`

[Anselmi 2024]

Centralized Decentralized

Synchronous

Asynchronous

Pool of OFF servers

Pool of INIT servers

Pool of OFF servers

Auto-scaling

N servers max

This talk

Asynchronous Load Balancing and Auto-scaling

Challenge 1
To build a model to evaluate the performance of Knative
● User-defined scale-up rules
● Power-of-d and JoinBelowThreshold-d (JBT-d)

Challenge 2
Asymptotic Delay and Relative Energy Optimality (DREO), ie,
● the user-perceived waiting time and the relative energy wastage induced by idle servers

vanish as N→∞

𝜆N

Pool of ON servers

Load balancing

Pool of INIT servers

Pool of OFF servers

Auto-scaling

N servers max

Markov Model
Microscopic description

𝜆N

Pool of ON servers

Load balancing

Pool of INIT servers

Pool of OFF servers

Auto-scaling

N servers max

f(x) and g(x) are the load-balancing and auto-scaling rules

λ N is the job arrival rate
α N is the rate of the auto-scaling clock
β and γ are the server initialization and expiration rates

Just one server:

Markov Model
Microscopic description

f(x) and g(x) are the load-balancing and auto-scaling rules

λ N is the job arrival rate
α N is the rate of the auto-scaling clock
β and γ are the server initialization and expiration rates

𝜆N

Pool of ON servers

Load balancing

Pool of INIT servers

Pool of OFF servers

Auto-scaling

N servers max

Simple example
f(x) =1/(NxON), random dispatching
g(x) = constant

β = ∞
⇒ challenging stability region!

Just one server:

Markov Model
Macroscopic description

Letting the proportion of servers with i jobs
and in state j denoted by

The Markov chain of interest has rates

Power-of-d : JBT-d :

Fluid Model and Connection with the Markov Model

Fluid Model and Connection with the Markov Model

Fluid Model and Connection with the Markov Model

Waste of
resources!

Optimal Design

Goal: to design scaling rules ensuring that a global attractor exists and is given by x* with

(well,)

In x*, asymptotic “delay and relative energy optimality” (DREO)

Optimal Design

Goal: to design scaling rules ensuring that a global attractor exists and is given by x* with

(well,)

In x*, asymptotic “delay and relative energy optimality” (DREO)

Theorem 2 (rephrased). DREO is obtained only by using Join-the-Idle-Queue and a non-zero
scale-up rate iff 𝜆 > “overall rate at which servers become idle-on“.

Empirical Comparison: Synchronous vs Asynchronous

We compare:
● our asynchronous combination of JIQ and Rate-Idle (ALBA), ie, ,

with
● TABS [Borst et al., 2017], which is synchronous, and achieves DREO.

α N (rate of the auto-scaling clock) set to make both scale-up rates equal
(scale-up rate = number of server initialization signals divided by time horizon)

Our metrics:
● the empirical probability of waiting
● the empirical energy consumption

Empirical Comparison: Synchronous vs Asynchronous

Scale-up rate Scale-up rate

Possible explanation. Asynchronous is “proactive”: jobs do not necessarily need to wait any
time a scale-up decision is taken.

