Games among selfish and team stations in polling systems (13ème Atelier en Évaluation des Performance)

Khushboo Agarwal In collaboration with Prof. Eitan Altman

Network Engineering and Operations INRIA Sophia Antipolis, France

Decemeber 03, 2024

Ínnía-

Games among selfish and team stations in polling system

1 Polling systems

- 2 Cyclic Bernoulli Polling (CBP) system
- **3** Games in CBP system

4 Analysis

(5) Concluding remarks and future directions

1 Polling systems

2 Cyclic Bernoulli Polling (CBP) system

3 Games in CBP system

4 Analysis

(5) Concluding remarks and future directions

イロト イボト イヨト イヨト

Queuing systems

- key feature: a customer is served as soon as its turn comes
- questions: whether or not to queue, where to queue, when to queue, etc.

• • • • • • • • •

Polling systems

- key feature: a customer is served only when the server visits its station
- questions: routing mechanism, choice of service disciplines, etc.

1 Polling systems

2 Cyclic Bernoulli Polling (CBP) system

3 Games in CBP system

4 Analysis

(5) Concluding remarks and future directions

イロト イボト イヨト イヨト

Cyclic Bernoulli Polling (CBP) system [Altman and Yechiali, 1993]

- a single server
- $N < \infty$ number of stations, each with its own queue
- server moves cyclically among the stations to provide the service
- when station *i* is polled, it is served w.p. $p_i \in (0, 1]$
- $\bullet\,$ some/all waiting customers are served, when polled
- λ_i : arrival rate at station i
- b_i : mean service time at station i

• assumption:
$$\sum_{i=1}^{N} \rho_i < 1$$
 for $\rho_i := \lambda_i b_i$

• application: LAN based on token-ring protocol

Dynamics: when station is "not served"

Games among selfish and team stations in polling system

э

Dynamics: when station is served under "gated" policy

Figure 1: Gated policy (serve only those which are present at the arrival instant of server)

Khushboo Agarwal

Games among selfish and team stations in polling system

December 03, 2024 9 / 38

Image: A 1 = 1

Dynamics: when station is served under "partially-exhaustive" policy

Figure 2: Partially-exhaustive policy (serve all, except those arriving during the switch-in time)

Khushboo Agarwal

Games among selfish and team stations in polling system December 03, 2024

୬ ଏ (୦ 10 / 38

Optimization from server's perspective

- consider a mixed CBP system
 - some stations use gated, some use partially exhaustive, while others use exhaustive discipline
- Q. What are the *optimal switch-in probabilities* to *minimize the expected* workload of the system?

$$\min_{\substack{p_1,\dots,p_N\\\text{subject to:}}} \sum_{i=1}^N \rho_i E[W_i(p_1,\dots,p_N)]$$

• pseduo-conservation law \longrightarrow closed-form expression for $\sum_{i=1}^{N} \rho_i E[W_i(p_1, \dots, p_N)]$

Optimization from server's perspective (contd.)

Paradoxical result [Altman and Yechiali, 1993]

If N = 1, then it is optimal to have $p_1^* < 1$, under some conditions!

 \implies to minimize the waiting time, it is not the best strategy to serve the queue always!!

Reverse question: from stations' perspective

If the stations could decide to accept or reject the service from the server based on some objective, what will be their individual choice of p_i ?

- choice of each station will depend on others' choices
- solution is obtained via a non-cooperative game among stations

Literature survey

- stations in our case are strategic!
- in queuing theory, strategic queuing is a sub-field ([Hassin and Haviv, 2003, Hassin, 2016, Rosokha and Wei, 2024, Gaitonde and Tardos, 2020, Bendel and Haviv, 2018, Burnetas et al., 2017])
- strategic polling can be a sub-field for theory of polling systems:
 - [Adan et al., 2018]: routing game for customers in a two-queue polling system
 - [Dvir et al., 2020]: game between the server and the customers in a tandem queue
 - server decides the operating scheme and the price charged to the customers
 - customers decide whether to join the queue or balk

1 Polling systems

- 2 Cyclic Bernoulli Polling (CBP) system
- **3** Games in CBP system

4 Analysis

(5) Concluding remarks and future directions

э

イロト イボト イヨト イヨト

Game formulation

- single server, N number of stations cyclic movement, ... (as before)
- walking times, service times, arrivals, switch-in times, ... (as before)

BUT...

- \times server decides probabilities to serve or not serve the stations (old)
- \checkmark stations decide the probabilities to accept or reject the service (new)

イロト イポト イヨト イヨト

Game formulation (contd.)

Non-cooperative game $\langle \mathcal{N}, (\mathcal{A}_i)_i, (c_i)_i \rangle$

- each station acts as a player $\implies \mathcal{N} := \{1, \dots, N\}$ is the set of players
- $\mathcal{A}_i := \left[\underline{p}_i, 1\right]$ is set of strategies for station/player i, for some $\underline{p}_i > 0$
 - $p_i \in \mathcal{A}_i$ represents P(station i accepts the service when polled)
- $c_i : \prod_{i=1}^N \mathcal{A}_i \to \mathbb{R}$ is the cost function of the station *i* (in steady state)

イロト イヨト イヨト

Game formulation (contd.)

Common knowledge among stations

- \checkmark system parameters (like mean arrival, service, switch-in and walking times)
- $\checkmark~$ service discipline used by each station
 - \mathcal{G} : set of stations using gated discipline
 - \mathcal{P} : set of stations using partially-exhaustive discipline
- \times position of the server
- $\times~$ lengths of other queues

Our main questions

- for certain cost functions, what is the (pure/mixed) Nash equilibrium, if it exists?
- is P(station accepts service from the server) < 1 or = 1, at equilibrium?

Nash equilibrium

• $\sigma_i : \mathcal{A}_i \to [0, 1]$ is a mixed strategy if it assigns to each pure strategy $p_i \in \mathcal{A}_i$, a probability $\sigma_i(p_i)$ such that $\sum_{p_i \in \mathcal{A}_i} \sigma_i(p_i) = 1$.

• a (mixed) strategy profile $(\sigma_1^*, \ldots, \sigma_N^*)$ is called a Nash equilibrium if:

$$c_i(\sigma_i^*, \sigma_{-i}^*) \leq c_i(p_i, \sigma_{-i}^*), \text{ for all } p_i \in \mathcal{A}_i, \text{ for all } i \in \mathcal{N}.$$

better not to deviate alone

・ロト ・同ト ・ヨト ・ヨト

Polling systems Cyclic Bernoulli Polling (CBP) system Games in CBP system Analysis 00000

Three variants of games

Among selfish stations

$$c_i(p_1,\ldots,p_N) = E[W_i(p_1,\ldots,p_N)]$$

(own expected waiting time)

Team approach

$$c_i(p_1,\ldots,p_N) = \sum_{i=1}^N \rho_i E[W_i(p_1,\ldots,p_N)]$$

(same as server's objective before)

Among partially-cooperative station

$$c_i(p_1, \dots, p_N) = \left(\sum_{i=1}^N \rho_i E[W_i(p_1, \dots, p_N)]\right) + Q_i p_i \qquad (\text{extra cost, } Q_i \ge 0)$$
Khushboo Agarwal
Games among selfish and team stations in polling system
December 03, 2024
20 / 38

Khushboo Agarwal

Games among selfish and team stations in polling system

1 Polling systems

- 2 Cyclic Bernoulli Polling (CBP) system
- **3** Games in CBP system

4 Analysis

(5) Concluding remarks and future directions

э

イロト イボト イヨト イヨト

Game among selfish stations

• recall, objective is to minimize expected waiting time

$$c_i(p_1,\ldots,p_N) = E[W_i(p_1,\ldots,p_N)]$$

- either all stations use gated $(\mathcal{N} = \mathcal{G})$ or all use partially exhaustive $(\mathcal{N} = \mathcal{P})$ policy
- game looks simple, but it's NOT ...

3 > 4 3

Game among selfish stations (contd.)

- X_k^i : number of customers in queue k, when station i is polled (at steady state)
- $f_k(i) = E[X_k^i]$ and $f_i(i,i) = E[(X_i^i)^2]$
- for gated discipline:

$$c_i(p_1, \dots, p_N) = \frac{1 + \rho_i}{2\lambda_i} \frac{f_i(i, i; p_1, \dots, p_N)}{f_i(i; p_1, \dots, p_N)} + r_i$$

closed-form expression is available

Game among selfish stations (contd.)

- X_k^i : number of customers in queue k, when station i is polled (at steady state)
- $f_k(i) = E[X_k^i]$ and $f_i(i,i) = E[(X_i^i)^2]$
- for gated discipline:

solution of N^3 linear equations; expression is not direct $c_i(p_1, \dots, p_N) = \frac{1 + \rho_i}{2\lambda_i} \frac{f_i(i; p_1, \dots, p_N)}{f_i(i; p_1, \dots, p_N)} + r_i$ closed-form expression is available • when $k \neq i, k \neq l$:

$$\begin{split} f_{k+1}(i,l) &= p_k \left\{ \lambda_i \lambda_j (d_k^{(k)} + 2d_k r_k + r_k^{(2)}) + (d_k + r_k) [\lambda_l f_k(l) + \lambda_i f_k(l)] \right. \\ &+ f_k(k) \lambda_i \lambda_l (2(d_k + r_k) b_k + b_k^{(2)}) + f_k(i,l) + b_k \lambda_l f_k(k,i) + b_k \lambda_l f_k(k,l) \\ &+ b_k^2 \lambda_i \lambda_l f_k(k,k) \right\} + (1 - p_k) \left\{ \lambda_i \lambda_l d_k^{(2)} + [\lambda_l f_k(l) + \lambda_l f_k(l)] d_k + f_k(l,l) \right\}. \end{split}$$

• when $k \neq l$:

$$\begin{split} f_{k+1}(k,l) &= p_k \bigg\{ \lambda_k \lambda_l | d_k^{(2)} + 2d_k r_k + r_k^{(2)}] + (d_k + r_k) \lambda_k f_k(l) \\ &+ f_k(k) \lambda_k \lambda_l [2(d_k + r_k) b_k + b_k^{(2)}] + b_k \lambda_k f_k(k,l) + b_k^2 \lambda_k \lambda_l f_k(k,k) \bigg\} \\ &+ (1 - p_k) \bigg\{ \lambda_k \lambda_l d_k^{(2)} + [\lambda_k f_k(l) + \lambda_l f_k(k)] d_k + f_k(k,l) \bigg\}. \end{split}$$

for any k:

$$\begin{split} f_{k+1}(k,k) &= p_k \bigg\{ \lambda_k^2 [d_k^{(2)} + 2d_k r_k + r_k^{(2)}] + f_k(k) \lambda_k^2 [2(d_k + r_k) b_k + b_k^{(2)}] \\ &+ b_k^2 \lambda_k^2 f_k(k,k) \bigg\} + (1-p_k) \bigg\{ \lambda_k^2 d_k^{(2)} + 2\lambda_k d_k f_k(k) + f_k(k,k) \bigg\}. \end{split}$$

24 / 38

Game among selfish stations (contd.)

Theorem

The buffer occupancy (linear) equations admit a unique solution.

Theorem

The expected waiting time $E[W_i(p_1,\ldots,p_N)]$ is continuous in p_1,\ldots,p_N , for each station *i*.

Theorem

A mixed strategy NE exists.

Khushboo Agarwal

Games among selfish and team stations in polling system D

December 03, 2024

= nar

25 / 38

イロト イヨト イヨト

Numerical analysis

- at equilibrium, does a station accepts service from the server w.p. < or = 1?
- how does the cost vary at equilibrium?
- how does the (in)efficiency of the system compare w.r.t. that at the NE?

Price of Anarchy (PoA) =
$$\frac{\max_{\mathbf{p}^*} \sum_{i=1}^N c_i(\mathbf{p}^*)}{\min_{\mathbf{p}} \sum_{i=1}^N c_i(\mathbf{p})}$$

• • = • • =

Numerical analysis - for 'selfish' players

- even with selfish stations, P(stations reject service) can be 0
- station 2 has higher arrival rate, lower service rate \implies cost under \mathcal{P} is highest
- $PoA = 1 \implies best to accept service always$
- non-cooperation can lead to $p_i^* < 1$

A D b A A B b A B

alysis Concluding remarks and future directions

Game among (partially) cooperative stations

• recall,
$$c_i(p_1,\ldots,p_N) = \left(\sum_{i=1}^N \rho_i E[W_i(p_1,\ldots,p_N)]\right) + Q_i p_i$$
, where $Q_i \ge 0$

• some/all stations use gated or partially exhaustive policy

• closed-form expression for cost function is available here

< E

Game among (partially) cooperative stations (contd.)

Theorem: when switch-in time equals zero

• if $Q_i = 0$ for all i —

 $p_i^* = 1$ for each *i* is the unique pure strategy NE

• if $Q_i > 0$ at least for some i —

Figure 3: unique pure strategy NE

• in the above, \widetilde{p}_i is some constant, which decreases with Q_i

イロト イボト イヨト イヨト

Polling systems Cyclic Bernoulli Polling (CBP) system Games in CBP system Analysis C

Game among (partially) cooperative stations (contd.)

Theorem: when switch-in time is positive

- there exists a mixed strategy NE
- there exists $\rho_i \in (0,1)$ for each *i* such that for all $\rho_i \ge \rho_i$, there exists a unique pure strategy NE.

Numerical analysis - for 'team' players

- again, P(a station reject service) can be > 0
- station 2 with lesser workload rejects service with positive probability
- system is fully efficient at NE

Numerical analysis - for 'partially-cooperative' players

• arrival rate, ... as before,
$$Q_i = \frac{\rho_i d}{1 - \rho} + 100$$

- $1, 2 \in \mathcal{G}$: station with higher workload accepts with higher probability
- $1, 2 \in \mathcal{P}$: station with less workload accepts with higher probability
- $1 \in \mathcal{G}$, but $2 \in \mathcal{P}$: station 1 accepts with higher probability

Khushboo Agarwal

December 03, 2024

1 Polling systems

- 2 Cyclic Bernoulli Polling (CBP) system
- **3** Games in CBP system

4 Analysis

(5) Concluding remarks and future directions

э

イロト イポト イヨト イヨト

Concluding remarks and future directions,

- studied different non-cooperative games among strategic stations in cyclic Bernoulli polling system
- proved the existence of (pure/mixed) strategy Nash equilibrium
- characterized Nash equilibrium, whenever possible
- showed numerically that P(station reject service) > 0 in some cases!
- in future:
 - study alternative service disciplines and routing mechanisms
 - investigate the cooperative counterpart to the non-cooperative games

References I

[Adan et al., 2018] Adan, I. J., Kulkarni, V. G., Lee, N., and Lefeber, E. (2018). Optimal routeing in two-queue polling systems. Journal of Applied Probability, 55(3):944-967.

[Altman and Yechiali, 1993] Altman, E. and Yechiali, U. (1993). Cyclic bernoulli polling.

Zeitschrift für Operations Research, 38:55-76.

[Bendel and Haviv, 2018] Bendel, D. and Haviv, M. (2018). Cooperation and sharing costs in a tandem queueing network. European Journal of Operational Research, 271(3):926-933.

[Burnetas et al., 2017] Burnetas, A., Economou, A., and Vasiliadis, G. (2017). Strategic customer behavior in a queueing system with delayed observations. *Queueing Systems*, 86:389-418.

3

35 / 38

イロト イボト イラト イラト

References II

[Dvir et al., 2020] Dvir, N., Hassin, R., and Yechiali, U. (2020). Strategic behaviour in a tandem queue with alternating server. Queueing Systems, 96(3):205-244.

 $[Gaitonde \ and \ Tardos, \ 2020]$ Gaitonde, J. and Tardos, É. (2020).

Stability and learning in strategic queuing systems.

In Proceedings of the 21st ACM Conference on Economics and Computation, pages 319–347.

[Hassin, 2016] Hassin, R. (2016).

 $Rational \ queueing.$

CRC press.

[Hassin and Haviv, 2003] Hassin, R. and Haviv, M. (2003).

To queue or not to queue: Equilibrium behavior in queueing systems, volume 59. Springer Science & Business Media.

・ロト ・ 同ト ・ ヨト ・ ヨト

References III

[Rosokha and Wei, 2024] Rosokha, Y. and Wei, C. (2024).

Cooperation in queueing systems.

Management Science.

イロト イボト イヨト イヨト

Thank you for your attention!

Khushboo Agarwal

khushboo.agarwal@inria.fr

590

→ < ∃→

▶ ∢ ≣