Games among selfish and team stations in polling systems (13ème Atelier en Évaluation des Performance)

Khushboo Agarwal In collaboration with Prof. Eitan Altman

Network Engineering and Operations INRIA Sophia Antipolis, France

Decemeber 03, 2024

Ingia-

Khushboo Agarwal Games among selfish and team stations in polling syster December 03, 2024 1/38

- @ ▶ - ∢ ミ ▶ - ∢ ミ

4 0 8 4

1 [Polling systems](#page-2-0)

- 2 [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0)
- 3 [Games in CBP system](#page-14-0)

4 [Analysis](#page-20-0)

5 [Concluding remarks and future directions](#page-32-0)

イロト イ御 トイヨ トイヨト

ŧ

¹ [Polling systems](#page-2-0)

2 [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0)

3 [Games in CBP system](#page-14-0)

4 [Analysis](#page-20-0)

5 [Concluding remarks and future directions](#page-32-0)

イロト イ御 トイヨ トイヨト

ŧ

Queuing systems

- key feature: a customer is served as soon as its turn comes
- questions: whether or not to queue, where to queue, when to queue, etc.

Polling systems

- key feature: a customer is served only when the server visits its station
- questions: routing mechanism, choice of service disciplines, etc.

Khushboo Agarwal Games among selfish and team stations in polling system December 03, 2024 5/38

医阿里

∢ □ ▶ .∢ @ ▶ .∢ ミ

1 [Polling systems](#page-2-0)

2 [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0)

3 [Games in CBP system](#page-14-0)

4 [Analysis](#page-20-0)

5 [Concluding remarks and future directions](#page-32-0)

イロト イ御 トイヨ トイヨト

ŧ

Cyclic Bernoulli Polling (CBP) system [\[Altman and Yechiali, 1993\]](#page-34-1)

[Polling systems](#page-2-0) [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0) [Games in CBP system](#page-14-0) [Analysis](#page-20-0) [Concluding remarks and future directions](#page-32-0)

- a single server
- $N < \infty$ number of stations, each with its own queue
- server moves cyclically among the stations to provide the service
- when station i is polled, it is served w.p. $p_i \in (0,1]$
- some/all waiting customers are served, when polled
- λ_i : arrival rate at station *i*
- \bullet b_i : mean service time at station i N

• assumption:
$$
\sum_{i=1}^{N} \rho_i < 1 \text{ for } \rho_i := \lambda_i b_i
$$

• application: LAN based on token-ring protocol

Dynamics: when station is "not served"

Khushboo Agarwal Games among selfish and team stations in polling system December 03, 2024 8/38

G.

Dynamics: when station is served under "gated" policy

Figure 1: Gated policy (serve only those which are present at the arrival instant of server)

Khushboo Agarwal Games among selfish and team stations in polling system December 03, 2024 9/38

イロト イ伊 ト イヨ ト イヨ

 $2Q$

Dynamics: when station is served under "partially-exhaustive" policy

Figure 2: Partially-exhaustive policy (serve all, except those arriving during the switch-in time) イロト イ伊 ト イヨ ト イヨ ŧ

Khushboo Agarwal Games among selfish and team stations in polling syster December 03, 2024 10 / 38

 299

Optimization from server's perspective

- consider a mixed CBP system
	- some stations use gated, some use partially exhaustive, while others use exhaustive discipline
- Q. What are the *optimal switch-in probabilities* to *minimize the expected* workload of the system?

$$
\min_{p_1,\dots,p_N} \sum_{i=1}^N \rho_i E[W_i(p_1,\dots,p_N)]
$$
\nsubject to: $0 < p_i \leq 1$, for all $i \in \{1,\dots,N\}$.

• pseduo-conservation law \longrightarrow closed-form expression for \sum N $\frac{i=1}{i}$ $\rho_i E[W_i(p_1, \ldots, p_N)]$

Optimization from server's perspective (contd.)

Paradoxical result [\[Altman and Yechiali, 1993\]](#page-34-1)

If $N=1$, then it is optimal to have $p_1^* < 1$, under some conditions!

 \implies to minimize the waiting time, it is not the best strategy to serve the queue always!!

Reverse question: from stations' perspective

If the stations could decide to accept or reject the service from the server based on some objective, what will be their individual choice of p_i ?

- choice of each station will depend on others' choices
- solution is obtained via a non-cooperative game among stations

4 ロト 4 何 ト 4 ヨ ト 4 ヨ.

Literature survey

- stations in our case are strategic!
- \bullet in queuing theory, strategic queuing is a sub-field ([\[Hassin and Haviv, 2003,](#page-35-0) [Hassin, 2016,](#page-35-1) [Rosokha and Wei, 2024,](#page-36-0) [Gaitonde and Tardos, 2020,](#page-35-2) [Bendel and Haviv, 2018,](#page-34-2) [Burnetas et al., 2017\]](#page-34-3))
- strategic polling can be a sub-field for theory of polling systems:
	- [\[Adan et al., 2018\]](#page-34-4): routing game for customers in a two-queue polling system
	- [\[Dvir et al., 2020\]](#page-35-3): game between the server and the customers in a tandem queue
		- server decides the operating scheme and the price charged to the customers
		- customers decide whether to join the queue or balk

1 [Polling systems](#page-2-0)

- 2 [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0)
- 3 [Games in CBP system](#page-14-0)

4 [Analysis](#page-20-0)

5 [Concluding remarks and future directions](#page-32-0)

 $2Q$

Game formulation

- single server, N number of stations cyclic movement, \dots (as before)
- walking times, service times, arrivals, switch-in times, ... (as before)

BUT. . .

- \times server decides probabilities to serve or not serve the stations (old)
- \checkmark stations decide the probabilities to accept or reject the service (new)

∢ロト ∢倒 ト ∢ ヨ ト ∢ ヨ ト

Game formulation (contd.)

Non-cooperative game $\langle \mathcal{N}, (\mathcal{A}_i)_i, (c_i)_i \rangle$

- each station acts as a player $\implies \mathcal{N} := \{1, \ldots, N\}$ is the set of players
- $\bullet\;\mathcal{A}_i := \left[\underline{p}_i,1\right]$ is set of strategies for station/player $i,$ for some $\underline{p}_i > 0$
	- $p_i \in A_i$ represents $P(\text{station } i \text{ accepts the service when polled})$
- \bullet c_i : \prod N $i=1$ $A_i \rightarrow \mathbb{R}$ is the cost function of the station i (in steady state)

 $2Q$

Game formulation (contd.)

Common knowledge among stations

- \checkmark system parameters (like mean arrival, service, switch-in and walking times)
- \checkmark service discipline used by each station
	- $\mathcal G$: set of stations using gated discipline
	- \mathcal{P} : set of stations using partially-exhaustive discipline
- \times position of the server
- \times lengths of other queues

Our main questions

- for certain cost functions, what is the (pure/mixed) Nash equilibrium, if it exists?
- is P(station accepts service from the server) < 1 or $= 1$, at equilibrium?

 $2Q$

イロト イ押 トイミト イミト

Nash equilibrium

• $\sigma_i : \mathcal{A}_i \to [0,1]$ is a mixed strategy if it assigns to each pure strategy $p_i \in \mathcal{A}_i$, a probability $\sigma_i(p_i)$ such that $\sum \sigma_i(p_i) = 1$. $p_i \in A_i$

• a (mixed) strategy profile $(\sigma_1^*, \ldots, \sigma_N^*)$ is called a Nash equilibrium if:

$$
c_i(\sigma_i^*, \sigma_{-i}^*) \leq c_i(p_i, \sigma_{-i}^*), \text{ for all } p_i \in \mathcal{A}_i, \text{ for all } i \in \mathcal{N}.
$$

better not to deviate alone

Three variants of games

Among selfish stations

$$
c_i(p_1,\ldots,p_N)=E[W_i(p_1,\ldots,p_N)]
$$

$(own expected waiting time)$

Team approach

$$
c_i(p_1,\ldots,p_N)=\sum_{i=1}^N \rho_i E[W_i(p_1,\ldots,p_N)]
$$

 $(same as server's objective before)$

Among partially-cooperative station

$$
c_i(p_1,\ldots,p_N) = \left(\sum_{i=1}^N \rho_i E[W_i(p_1,\ldots,p_N)]\right) + Q_i p_i \qquad \qquad \text{(extra cost, } Q_i \geq 0)
$$

Khushboo Agarwal Games among selfish and team stations in polling syster December 03, 2024 20 / 38

1 [Polling systems](#page-2-0)

- 2 [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0)
- 3 [Games in CBP system](#page-14-0)

4 [Analysis](#page-20-0)

5 [Concluding remarks and future directions](#page-32-0)

 $2Q$

Game among selfish stations

• recall, objective is to minimize expected waiting time

$$
c_i(p_1,\ldots,p_N)=E[W_i(p_1,\ldots,p_N)]
$$

- either all stations use gated $(\mathcal{N} = \mathcal{G})$ or all use partially exhaustive $(\mathcal{N} = \mathcal{P})$ policy
- game looks simple, but it's NOT ...

K □ ▶ K @ ▶ K ミ ▶ K ミ

 $Game$ among selfish stations (contd.)

- X_k^i : number of customers in queue k, when station i is polled (at steady state)
- $f_k(i) = E[X_k^i]$ and $f_i(i, i) = E[(X_i^i)^2]$
- for gated discipline:

$$
c_i(p_1,\ldots,p_N) = \frac{1+\rho_i}{2\lambda_i} \frac{f_i(i,i;p_1,\ldots,p_N)}{f_i(i;p_1,\ldots,p_N)} + r_i
$$

expression is available

 $closed-form$

- @ ▶ - ∢ ミ ▶ - ∢ ミ

4 0 8 4

 $2Q$

Game among selfish stations (contd.)

• X_k^i : number of customers in queue k, when station i is polled (at steady state)

[Polling systems](#page-2-0) [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0) [Games in CBP system](#page-14-0) [Analysis](#page-20-0) [Concluding remarks and future directions](#page-32-0)

- $f_k(i) = E[X_k^i]$ and $f_i(i, i) = E[(X_i^i)^2]$
- for gated discipline:

 $c_i(p_1,\ldots,p_N) = \frac{1+\rho_i}{2\lambda_i}$ $f_i(i; p_1, \ldots, p_N)$ $f_i(i; p_1, \ldots, p_N)$ $+ r_i$ closed-form expression is available solution of N^3 linear equations; expression is not direct

 \bullet when $k \neq i, k \neq l$.

$$
\begin{aligned} f_{k+1}(i,l) & = p_k \bigg\lbrace \lambda_i \lambda_l [d^{(3)}_k+2d_kr_k+r^{(2)}_k] + (d_k+r_k)[\lambda_l f_k(t)+\lambda_i f_k(t)] \\ & + f_k(k)\lambda_i \lambda_l [2(d_k+r_k)b_k+b^{(2)}_k] + f_k(i,l) + b_k \lambda_l f_k(k,l) + b_k \lambda_l f_k(k,l) \\ & + b_k^2 \lambda_i \lambda_l f_k(k,k) \bigg\rbrace + (1-p_k) \bigg\lbrace \lambda_i \lambda_l d^{(2)}_k + [\lambda_l f_k(l)+\lambda_l f_k(l)] d_k + f_k(i,l) \bigg\rbrace. \end{aligned}
$$

 \bullet when $k \neq k$

$$
\label{eq:1} \begin{split} f_{k+1}(k,l) & = p_k \bigg\{ \lambda_k \lambda_l [d_k^{(2)} + 2 d_k r_k + r_k^{(2)}] + (d_k + r_k) \lambda_k f_k(l) \\ & + f_k(k) \lambda_k \lambda_l [2(d_k + r_k) b_k + b_k^{(2)}] + b_k \lambda_k f_k(k,l) + b_k^2 \lambda_k \lambda_l f_k(k,k) \bigg\} \\ & + (1-p_k) \bigg\{ \lambda_k \lambda_l d_k^{(2)} + [\lambda_k f_k(l) + \lambda_l f_k(k)] d_k + f_k(k,l) \bigg\}. \end{split}
$$

 \bullet for any k :

$$
\label{eq:1} \begin{split} f_{k+1}(k,k) &= p_k \bigg\{ \lambda_k^2 [d_k^{(2)} + 2 d_k r_k + r_k^{(2)}] + f_k(k) \lambda_k^2 [2(d_k + r_k) b_k + b_k^{(2)}] \\ & + b_k^2 \lambda_k^2 f_k(k,k) \bigg\} + (1-p_k) \bigg\{ \lambda_k^2 d_k^{(2)} + 2 \lambda_k d_k f_k(k) + f_k(k,k) \bigg\}. \end{split}
$$

Game among selfish stations (contd.)

Theorem

The buffer occupancy (linear) equations admit a unique solution.

Theorem

The expected waiting time $E[W_i(p_1, \ldots, p_N)]$ is continuous in p_1, \ldots, p_N , for each station i.

Theorem

A mixed strategy NE exists.

Khushboo Agarwal Games among selfish and team stations in polling system December 03, 2024 25 / 38

イロト イ御 トイヨ トイヨト

 $E = \Omega Q$

Numerical analysis

- at equilibrium, does a station accepts service from the server w.p. \lt or $= 1$?
- how does the cost vary at equilibrium?
- \bullet how does the (in)efficiency of the system compare w.r.t. that at the NE?

$$
\text{Price of Anarchy (PoA)} = \frac{\max_{\mathbf{p}^*} \sum_{i=1}^{N} c_i(\mathbf{p}^*)}{\min_{\mathbf{p}} \sum_{i=1}^{N} c_i(\mathbf{p})}
$$

 $2Q$

イロト イ母 ト イヨ ト イヨ

Numerical analysis - for 'selfish' players

- even with selfish stations, P (stations reject service) can be 0
- station 2 has higher arrival rate, lower service rate \implies cost under P is highest
- $PoA = 1 \implies best to accept service always$
- non-cooperation can lead to $p_i^* < 1$

イロト イ御 トイヨ トイヨ

 $2Q$

Game among (partially) cooperative stations

• recall,
$$
c_i(p_1,...,p_N) = \left(\sum_{i=1}^N \rho_i E[W_i(p_1,...,p_N)]\right) + Q_i p_i
$$
, where $Q_i \ge 0$

[Polling systems](#page-2-0) [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0) [Games in CBP system](#page-14-0) **[Analysis](#page-20-0)** [Concluding remarks and future directions](#page-32-0)

• some/all stations use gated or partially exhaustive policy

• closed-form expression for cost function is available here

4 0 8 4

- @ ▶ - ∢ ミ ▶ - ∢ ミ

 $2Q$

Game among (partially) cooperative stations (contd.)

Theorem: when switch-in time equals zero

• if $Q_i = 0$ for all i —

 $p_i^* = 1$ for each *i* is the unique pure strategy NE

[Polling systems](#page-2-0) [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0) [Games in CBP system](#page-14-0) [Analysis](#page-20-0) [Concluding remarks and future directions](#page-32-0)

• if $Q_i > 0$ at least for some i –

Figure 3: unique pure strategy NE

• in the above, \tilde{p}_i is some constant, which decreases with Q_i

Khushboo Agarwal Games among selfish and team stations in polling syster December 03, 2024 29 / 38

Game among (partially) cooperative stations (contd.)

Theorem: when switch-in time is positive

- there exists a mixed strategy NE
- there exists $\rho_i \in (0,1)$ for each i such that for all $\rho_i \geq \rho_i$, there exists a unique pure strategy NE.

[Polling systems](#page-2-0) [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0) [Games in CBP system](#page-14-0) [Analysis](#page-20-0) [Concluding remarks and future directions](#page-32-0)

∢ロト ∢倒 ト ∢ ヨ ト ∢ ヨ ト

Numerical analysis - for 'team' players

- again, $P(a$ station reject service) can be > 0
- station 2 with lesser workload rejects service with positive probability
- system is fully efficient at NE

∢ □ ▶ .∢ @ ▶ .∢ ミ

Numerical analysis - for 'partially-cooperative' players

• arrival rate, ... as before,
$$
Q_i = \frac{\rho_i d}{1 - \rho} + 100
$$

[Polling systems](#page-2-0) [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0) [Games in CBP system](#page-14-0) [Analysis](#page-20-0) [Concluding remarks and future directions](#page-32-0)

- 1, $2 \in \mathcal{G}$: station with higher workload accepts with higher probability
- 1, $2 \in \mathcal{P}$: station with less workload accepts with higher probability
- $1 \in \mathcal{G}$, but $2 \in \mathcal{P}$: station 1 accepts with higher probabil[ity](#page-30-0)

 $2Q$

1 [Polling systems](#page-2-0)

- 2 [Cyclic Bernoulli Polling \(CBP\) system](#page-5-0)
- 3 [Games in CBP system](#page-14-0)

4 [Analysis](#page-20-0)

5 [Concluding remarks and future directions](#page-32-0)

 $2Q$

Concluding remarks and future directions

- studied different non-cooperative games among strategic stations in cyclic Bernoulli polling system
- proved the existence of (pure/mixed) strategy Nash equilibrium
- characterized Nash equilibrium, whenever possible
- showed numerically that $P(\text{station reject service}) > 0$ in some cases!
- in future:
	- study alternative service disciplines and routing mechanisms
	- investigate the cooperative counterpart to the non-cooperative games

 299

References I

[Adan et al., 2018] Adan, I. J., Kulkarni, V. G., Lee, N., and Lefeber, E. (2018). Optimal routeing in two-queue polling systems. Journal of Applied Probability, $55(3):944-967$.

[Altman and Yechiali, 1993] Altman, E. and Yechiali, U. (1993). Cyclic bernoulli polling. Zeitschrift für Operations Research, 38:55-76.

[Bendel and Haviv, 2018] Bendel, D. and Haviv, M. (2018). Cooperation and sharing costs in a tandem queueing network. European Journal of Operational Research, 271(3):926-933.

[Burnetas et al., 2017] Burnetas, A., Economou, A., and Vasiliadis, G. (2017). Strategic customer behavior in a queueing system with delayed observations. $Queueing Systems, 86:389-418.$

References II

[Dvir et al., 2020] Dvir, N., Hassin, R., and Yechiali, U. (2020). Strategic behaviour in a tandem queue with alternating server. Queueing Systems, $96(3):205-244$.

[Gaitonde and Tardos, 2020] Gaitonde, J. and Tardos, É. (2020). Stability and learning in strategic queuing systems.

In Proceedings of the 21st ACM Conference on Economics and Computation, pages 319–347.

[Hassin, 2016] Hassin, R. (2016).

Rational queueing.

CRC press.

[Hassin and Haviv, 2003] Hassin, R. and Haviv, M. (2003).

To queue or not to queue: Equilibrium behavior in queueing systems, volume 59. Springer Science & Business Media.

ミー

References III

[Rosokha and Wei, 2024] Rosokha, Y. and Wei, C. (2024).

Cooperation in queueing systems.

Management Science.

Khushboo Agarwal Games among selfish and team stations in polling systen December 03, 2024 37 / 38

イロト イ押 トイミト イミト

ミー

Thank you for your attention!

Khushboo Agarwal

khushboo.agarwal@inria.fr

Khushboo Agarwal Games among selfish and team stations in polling system December 03, 2024 38 / 38

イロト イ御 トイヨ トイヨト

 2990

ŧ