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Brief history of hairy black holes

No-hair conjecture /Ruffini and Wheeler, 1971/: black holes
formed by gravitational collapse are characterized by their
mass, angular momentum, and electric charge = the only
parameters that can survive the collapse ⇒ all black holes are
described by the Kerr-Newman metrics.

No-hair theorems /Bekenstein, 1972,.../ confirm the
conjecture for a number of special cases. No new black holes
holes for gravitating massive scalar, spinor, of vector fields,
also for a scalar field with a positive potential, etc.

First explicit counter-example /M.S.V.+ Gal’tsov, 1989/:
static black holes with Yang-Mills hair. Triggered an
avalanche of discoveries of other hairy black holes.



Black holes with Yang-Millas hair



Zoo of hairy black holes

before 2000: Einstein-Yang-Mills black holes and their
generalizations – higher gauge groups, additional fields
(Higgs, dilaton), non-spherical solutions, stationary
generalizations, Skyrme black holes, Gauss-Bonnet, . . .
/M.S.V.+Gal’tsov, Phys.Rep. 319 (1999) 1/

after 2000: black holes with scalar hair – engineered potential,
spinning clouds of massive complex scalar /Herdeiro-Radu/,
Horndeski black holes, metric-affine theories, higher
dimensions, stringy corrections, hairy black holes with massive
gravitons /Gervalle+M.S.V., 2020/, etc, . . .
/M.S.V., 1601.0823/

Which of these solutions are physical ?



Present status of hairy black holes

All known solutions have been obtained within simplified
theoretical models. They are nice theoretically but their
physical relevance is not obvious.

To be physically relevant, the solution should be obtained
within the context of the physical theory = Einstein’s gravity
+Standard Model of fundamental interactions
(QCD+electroweak).

Classical configurations in the QCD sector are destroyed by
large quantum corrections ⇒ useless to study. There remains
the gravitating electroweak theory =
Einstein-Weinberg-Salam. This describes the Kerr-Newman
black holes. Does it describe other black holes ?

Only unphysical limits of the electroweak theory have been
analyzed in the black hole context, since in the full theory the
spherical symmetry is lost.



Electroweak condensation /Ambjorn-Olesen 1989/

Homogeneous magnetic field ~B = (0, 0,B) with constant
Higgs is the energy minimum if B < m2

w/e ≈ 1020 T.

For m2
h /e < B < m2

h /e the energy minimum develops a
condensate of W ,Z ,Φ and becomes inhomogeneous forming
a lattice of vortices. Anti-Lenz: the magnetic field is maximal
where the condensate is maximal.

For B > m2
h /e the energy minimum is again homogeneous but

with zero Higgs: symmetric phase.



Magnetically charged black hole

Radial magnetic field and the Reissner-Nordstrom metric

B = P/r2, P =
n

2e
, n ∈ Z,

ds2 = −N(r) dt2 +
dr2

N(r)
+ r2

(
dϑ2 + sin2 ϑ dϕ2

)
,

N(r) = 1− 2M

r
+

Q2

r2
, Q2 = 4πGP2.

The event horizon is at rh = M +
√
M2 − Q2 ≥ Q. The magnetic

field at the horizon can be very large,

B(rh) =
P

r2h
≤ P

Q2
=

1√
4πGP

.

If rh <
√
eP/mw then the condensate should appear at the horizon.

If rh <
√
eP/mh then in addition a bubble of symmetric phase

appears.



Magnetic electroweak black hole /Maldacena 2020/
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Radial magnetic field near the horizon where Higgs=0, next electroweak

“corona” made of vortex pieces, next radial magnetic field in the far field

where Higgs=const.



Preliminary analyzis



The electroweak corona should exist already in flat space
around a pointlike magnetic charge. Therefore, one may start
by studying electroweak monopoles in flat space.

Best known are magnetic monopoles of t’Hooft-Polyakov.
Their energy is finite but they are obtained within the GUT
theories and are not described by the Standard Model.

Electroweak monopoles were considered by Cho+Maison in
1996 and a lot more extensively in our recent papers
Nucl.Phys. B 984 (2022) 115937; B 987 (2023) 116112
together with my student Romain Gervalle. They are
superpositions of the pointlike Dirac and extended
non-Abelian t’Hooft-Polyakov monopoles. Their energy is
infinite because of the pointlike singularity.

Including gravity converts them into hairy black holes and
renders the energy finite: R.Gervalle,M.S.V, arXiv:2406.xxxxx



Einstein-Weinberg-Salam



Einstein-Weinberg-Salam theory

L =
1

2κ
R + LWS

LWS = − 1

4g2
Wa

µνWaµν− 1

4g ′2
BµνB

µν−(DµΦ)†DµΦ−β
8

(
Φ†Φ− 1

)2

where Higgs is a complex doublet, Φtr = (φ1, φ2),

Bµν = ∂µBν − ∂νBµ , Wa
µν = ∂µWa

ν − ∂νWa
µ + εabcWb

µWc
ν ,

DµΦ =

(
∂µ −

i

2
Bµ −

i

2
τ aWa

µ

)
Φ .

The length scale and mass scale are l 0 =1.5× 10−16 cm and
m0 =128.6 GeV. The couplings

g2 = 0.78, g ′2 = 0.22, β = 1.88, κ =
4e2

α

m2
z

M2
pl

= 5.42× 10−33.

Electron charge e = −gg ′, α = 1/137. The Z ,W , Higgs masses in
unites of m0 are mz = 1/

√
2, mw = gmz, mh =

√
βmz.



Electromagnetic field

Nambu:

eFµν = g2Bµν − g ′2naWa
µν , na = (Φ†τaΦ)/(Φ†Φ)

defines conserved electric and magnetic currents

4πJ µ = ∇νFµν , 4πJ̃ µ = ∇νF̃µν ,

magnetic charge

P =

∫
J̃ 0√−gd3x .

t’Hooft:

Fµν = Fµν + εabcn
aDµnbDνnc = ∂µAν − ∂νAµ,

electric current
4πJµ = ∇νFµν .



30 coupled equations to solve:

Weinberg-Salam:

∇µBµν = g ′2
i

2
(Φ†DνΦ− (DνΦ)†Φ),

DµWa
µν = g2 i

2
(Φ†τ aDνΦ− (DνΦ)†τ aΦ),

DµD
µΦ− β

4
(Φ†Φ− 1)Φ = 0,

Einstein:

Gµν = κTµν where κ ∼ 10−33 is very small and

Tµν =
1

g2
Wa

µσWa σ
ν +

1

g ′ 2
BµσB

σ
ν + 2D(µΦ†Dν)Φ + gµνLWS

=30 coupled equations. Vacuum solution:

gµν = ηµν , B = W = 0, Φ =

(
0
1

)



Simplest solutions

Reissner-Nordstrom (RN):

B = W 3 =
n

2
cosϑ dϕ, W 1 = W 2 = 0, Φ =

(
0
1

)
,

~B =
P~r

r3
, P =

n

2|e| , n ∈ Z,

ds2 = −N(r) dt2 +
dr2

N(r)
+ r2

(
dϑ2 + sin2 ϑ dϕ2

)
,

N(r) = 1− 2M

r
+

Q2

r2
, Q2 =

κn2

8e2
, rh = M +

√
M2 − Q2

RN-de Sitter:

B =
n

2
cosϑ dϕ, W = Φ = 0 ⇒ ~B = g2P~r

r3
,

N(r) = 1− 2M

r
+

Q2

r2
− Λ

3
r2, Λ =

κβ

8
.



Perturbative analysis



Perturbations around RN

Perturbations wµ = W1
µ + iW2

µ fulfil the Proca equation

Dµwµν + ieFνσw
σ = m2

w wν ,

with Dµ = ∇µ + ieAµ where Fµν = ∂µAν − ∂νAµ. Solution is

w = e iωtψ(r)(sinϑ)j
∑

m∈[−j ,j]
cm

(
tan

ϑ

2

)m

e imϕ (dϑ+ i sinϑdϕ),

where coefficients cm are arbitrary. j = |n|/2− 1 (|n| > 1) hence
j > 0 for |n| > 2: perturbations are not spherically symmetric.

(
− d2

dr2?
+ N(r)

[
m2

w −
|n|
2r2

])
ψ(r) = ω2ψ(r) (?)

There are solutions ψ(r) with ω2 < 0 for small rh (instability), no
such modes for large rh, and a zero mode ψ0(r) with ω = 0 for a
special value rh = r0h (n) = condensate = static hair.



Perturbative black hole hair

n 2 4 6 10 20 40 100 200

r0H 0.89 1.47 1.93 2.69 4.12 6.19 10.33 15.03

One has r0h (n) ≈
√
|n|/g for n� 1 hence B(r0h ) ≈ m2

w, which is
the condition for the condensate to appear. The condensate is
maximal at the horizon.
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Figure: The RN horizon size rkh for which there exists a k-node zero mode
ψk(r) (left) and the profile of the fundamental zero mode ψ0(r) (right).



Horizon distribution of vortices

The condensate field wµ depends on coefficients cm and produces a
current Jµ = ∇σ=(w̄σwµ) tangential to the horizon. The current
sources second order corrections for the F ,Z ,Φ fields forming
vortices orthogonal to the horizon. The energy contains the fourth
order term ∼ |wµ|4. To determine the coefficients cm we minimize

〈|wµ|4〉 ≡
∫
|wµ|4

√−g d3x ,

under the condition that the norm should be fixed,

〈|wµ|2〉 ≡
∫
|wµ|2

√−g d3x = const.

This leads to the following prescription



Minimization procedure

Minimize with respect to cm and Lagrange multiplier µ the function

E = E4 + µ (E2 − 1),

E4 =
∑

k,m,l∈[−j,j]
A2j ,k+l cm ck cl ck+l−m

E2 =
∑

m∈[−j ,j]
Aj ,m c2m

with j = |n|/2− 1 and

Aj ,m =

∫ π

0
(sinϑ)2j+1

(
tan

ϑ

2

)2m

dϑ = 22j+1 Γ(j + 1 + m)Γ(j + 1−m)

Γ(2j + 2)
.

This gives values of cm determining positions of |n| − 2 vortices
homogeneously distributed over the horizon.



Platonic distribution of vortices – corona

Figure: Left: the horizon distribution of the W-condensate w̄µwµ

corresponding to the global energy minimum for n = 10. The level lines
coincide with the electric current flow forming loops around 8 radial
vortices (dark spots) repelling each other and forming a lattice. Right:
the same when all vortices merge into two oppositely directed
multi-vortices; axial symmetry cm ∼ δ0m, also a stationary point.



Non-perturbative analysis



Axial symmetry

ds2 = −e2UN(r) dt2 + e−2Udl2,

dl2 = e2K
[
dr2

N(r)
+ r2dϑ2

]
+ e2S r2 sin2 ϑdϕ2,

W = T2 (F1 dr + F2 dϑ)− n

2
(T3 F3 − T1F4 ) dϕ ,

B = −(n/2)Y dϕ , Φtr = (φ1, φ2).

Here U,K,S,F1,F2,F3,F4,Y , φ1, φ2 are 10 real functions of r, ϑ.
For non-extremal solutions N(r) = 1− rH/r where rH labels the
solutions. We require invariance under ϑ→ π − ϑ, obtain 10
elliptic equations fer the 10 functions, and solve them numerically
with the FreeFem++ numericatl solver. We solve for values of the
gravity coupling 10−10 < κ < 10−2 and then extrapolate to the
physical value κ ∼ 10−33.



Hairy black holes

Same magnetic charge P = n/(2|e|) as for the RN black hole. We
start at rH = r0H(n) when hairy solutions just start deviating from
RN and then we decrease rH. The massive hair appears and gets
longer as the horizon shrinks. When the field at the horizon
increases up to B(rH) = m2

h , the hair stops growing and a bubble
of symmetric phase appears. This bubble expands as the horizon
shrinks further till reaching the minimal value when it becomes
degenerate, surface gravity vanishes, but the area remain finite.
The black hole then becomes extremal.

∼
√
|n|/g ∼

√
|n|/g ∼

√
|n|/g



Hair charge

The total magnetic charge P of the black hole splits as

Ph =

∫

r>rH

J̃0
√−g d3x , PH = P − Ph,

where Ph is contained in the hair outside the horizon and PH

remains inside. The hair charge Ph grows when the horizon shrinks
and in the extremal limit one has

Ph = g ′2P = 0.22P

hence 22% of the charge moves to the hair.



ADM mass

is determined from the asymptotic g00 = −1 + 2M/r + . . . or from
the formula (same result)

M =
kHAH

4π
+

κ

8π

∫

r>rH

(
−T 0

0 + T k
k

) √−g d3x ,

surface gravity : kH = (1/2) N′e2U−K
∣∣
r=rH

horizon area : AH = 2πr2H

∫ π

0
eK+S−2U sinϑdϑ

∣∣∣∣
r=rH

This can be split as
M = MH + Mh

where the “horizon mass” MH is the mass of the RN black hole
with the same area AH and with the charge PH. The rest is the
“hair mass” Mh = M −MH. When the horizon gets smaller, the
hair mass Mh and hair charge Ph increase.



Horizon oblatness

The configurations are not spherical, one can define

horizon radius : rh =
√

AH/(4π)

equatorial radius : r eqH =
√

gϕϕ(rH, π/2)

polar radius : rplH = (1/π)

∫ π

0

√
gϑϑ(rH, ϑ) dϑ

horizon oblateness : δ = r eqH /rplH − 1

As the horizon radius decreases, the oblateness δ stars from zero
and increases, then reaches a maximum, starts decreasing and
approaches zero in the extreme limit. The extremal horizon is
perfectly spherical, although the hair is squashed.



Quadrupole moments

Far away from the horizon the theory reduces to electrovacuum,
hence one can define the gravitational QG and magnetic QM

quadrupole moments. They are determined by the asymptotic
expansion of the Ernst potentials at the symmetry axis close to the
spatial infinity.
As the horizon size decreases and black hole gets more hairy, the
quadrupole moments grow.



Non-extremal hairy solutions
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Figure: Parameters of non-extremal solutions with n = 10, κ = 10−3.
The M and MH curves are very close to each other. For rH → 0 they
become extremal, for rH → 2.5 they loose hair and become RN.



Extremal hairy solutions

They have zero surface gravity and are the most hairy. Depending
on the value of their charge parameter

Q =

√
κ

2
P =

√
κ

8

n

|e|

there are two phases,

phase I : Q < Q?, phase II : Q > Q?,

where

Q? ≈
0.3

g
√

Λ
, Λ =

κβ

8

In phase I one has B(rh) > m2
h and the Higgs field vanishes at the

horizon. In phase II one has B(rh) < m2
h and the Higgs field

deviates from zero at the horizon.



Extremal hairy solutions in phase I (n = 40)

Figure: The extremal solutions contain a small charged black hole inside a
bubble of symmetric phase, surrounded by a ring-shaped EW condensate
supporting 22 % of the total magnetic charge and two opposite
superconducting W-currents. This creates pieces of two magnetic
multi-vortices along the positive and negative z-directions. Farther away
the condensate disappears and the magnetic field becomes radial.



Extremal hairy solutions in phase I

They have Q < Q? and zero horizon oblateness, δ = 0. The Higgs
vanishes at the horizon, the horizon geometry coincides with the
extreme RN-de Sitter with rex ≈ g |Q|

ds2 = −N dt2 +
dr2

N
+ r2(dϑ2 + sin2 ϑ dϕ2) (?)

N =
(

1− rex
r

)2(
1− Λ

3

[
r2 + 2rrex + 3r2ex

])

78% of the magnetic charge is inside the horizon and 22% is
outside in the hair. Far away from the horizon the geometry
approaches RN described by (?) with

N = 1− 2M

r
+

Q2

r2
+O(1/r3)

where (!!!)
M < |Q|



Weak gravity

The hair carries 22% of the total charge, Qh = 0.22× Q, but hair
mass Mh is very small due to the negative Zeeman energy of the
condensate interacting with the magnetic field of the black hole,
which shifts the W-mass as

m2
w → m2

w − |B| ≈ 0

As a result, the mass-to-charge ratio for the hair is very small,
Mh/|Qh| ∼

√
κ� 1. This can be viewed as a manifestation of the

weak gravity conjecture. The condensate is magnetically repelled
by the black hole stronger than attracted gravitationally, but it
cannot fly away because it has to follow the Yukawa law. Since the
hair mass is small, one has (if Q � Q?)

M = MH + Mh ≈ MH =
rex
2

+
g2Q2

2rex
≈ g |Q| = 0.88 |Q| < |Q|

Hairy black hole is less energetic than RN for which M ≥ Q.



Extrapolating toward κ ∼ 10−33 if Q � Q?
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Hairy black holes as magnetic monopoles

Most popular magnetic monopoles of t’Hooft-Polyakov are
not described by the Standard Model. They are described by
GUT theories, which may or may not exist, hence the
existence of these monopoles is not obvious.

Standard Model definitely exists and admits solutions
describing electroweak monopoles, but in flat space their
energy diverges because B ∼ n/(2r2). This divergence might
be cured by renormalization, but so far nobody has proven
that renormalization works for magnetic charges.

Gravity converts monopoles to hairy black holes and renders
their mass finite:

M ≈ 5.1 |n|MPl

Therefore, it is possible that these black holes are the only
magnetic monopoles which may exist in Nature.



Increasing the charge

When the charge Q ∝ n grows, the sizes of the vacuum
bubble and of the hairy region scale as

√
|Q|. The hair grows

longer till macroscopic size of order 1 cm for very large Q.
The horizon size grows even faster, rex ∝ |Q|, and the black
hole absorbs the bubble.

The hair mass Mh grows faster than the horizon mass MH and
the ratio M/|Q| increases, always remaining smaller than one.

The horizon value of the hypermagnetic field B ∼ 1/|Q|
decreases and when B < m2

h , the horizon value of the Higgs
deviates from zero and the system enters phase II.



Extremal hairy solutions in phase II

In phase I, for Q < Q?, the horizon spherical – the oblateness
is zero, δ = 0. In phase II, for Q > Q?, symmetry changes and
horizon squashes, δ > 0. Near the transition point one has
(with s ≈ 10.8 if κ = 10−2)

δ ∝ (|Q| − Q?)s

This looks like a second order phase transition.

The fraction of the hair charge which was constant in phase I,
Ph/P = 0.22, starts decreasing. The black hole is getting less
hairy, the ratio M/|Q| grows, the geometry approaches
extreme RN.

The solution merges with extreme RN when the horizon size
overtakes the hair size, for

Qmax = 2.15Q? =
1.29

2g
√

Λ

No hairy solutions for Q > Qmax.



Existence diagram
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Figure: The parameters of extremal solutions (left) and the existence
diagram for hairy solutions (right) for κ = 10−2; Qm = 1/(g

√
Λ).



Planetary mass

The black hole is maximally hairy around the phase transition
point when the fraction of the hair mass Mh/M is maximal. Then

|n| ≈ 1.5× 1032, rh ≈ 3 cm,

the black hole mass has a planetary value,

M ≈ 2× 1025 kg

of which ≈ 11% is contained in the hair condensate.



Stability

According to Maldacena, the corona greatly enhances the Hawking
evaporation rate. Therefore, non-extremal black holes quickly relax
to the extremal state when their temperature is zero and

M < |Q|

Therefore, they cannot decay into RN black holes. However, axially
symmetric black holes can further reduce their mass by splitting
their hair into a hedgehog of vortices, and then they seem to
become absolutely stable. The corresponding solutions have not
yet been obtained.

⇒



Conclusions

We constructed for the first time hairy black holes described
by well-tested theories, GR and SM. This suggests that they
may really exist in Nature. Perhaps they could have been
created by fluctuations in primordial electroweak plasma.

They provide a spectacular example of the electroweak
condensation. They seem to be absolutely stable. Perhaps
they are the only magnetic monopoles which may exist.

Estimates based on the Parker bound and proton decay
catalysis show that contribution of magnetic black holes into
Dark Matter should be small. However, it is possible that they
form neutral pairs stabilized by a scalar attraction, then the
estimates may change.


