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displacement or velocity effect ?
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Abstract: The scattering of particles by a burst of Grav-

itational waves (called Memory Effect) has two versions.

In the velocity effect (VM) the particles fly apart with

constant but nonzero velocity. In the displacement effect

(DM) , advocated by Zel’dovich and Polnarev , the par-

ticle’s position has changed but they do not move. The

observation of the effect could be a mean to detect grav-

itational waves. Our study for (i) a Gausssian or (ii) a

Pöschl-Teller profile indicates that the generic VM effect

can become, for special choices of the wave parameters

labeled by an integer, a DM . The claims of Zel’dovich and

Polnarev are confirmed.

Joint work with J. Balog, G. W. Gibbons, P-M. Zhang

P. M. Zhang and P. A. Horvathy, “Displacement within ve-

locity effect in gravitational wave memory,” [arXiv:2405.12928

[gr-qc]].
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Road map:

• Memory Effect

A. displacement DM (Zel’dovich-Polnarev) p. 3

B. velocity ( VM ) (Ehlers-Kundt, Sachs p.4

• Sandwich waves (Gibbons-Hawking) p.5

• Geodesics in Brinkmann coordinates p.6.

• Gaussian profile p.8

• Pöschl-Teller potential p.11

• DM for vertical component p.15

• Massive geodesics p.17

• DM / VM for flyby p.18

• Conclusions p.24
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Memory effect

A. Displacement Zel’dovich, Polnarev
“Radiation of gravitational waves by a cluster of super-

dense stars,” Astron. Zh. 51, 30 (1974)

. . . [for] two noninteracting bodies (such as satel-
lites). [ . . . ] the distance should change, and
this effect might possibly serve as a nonresonance
detector. [ . . . ] although distance between free
bodies will change, their relative velocity will be-

come vanishingly small as flyby concludes.

Elaborated by V.B. Braginsky & L. P. Grishchuk
“Kinematic resonance and the memory effect in free mass

gravitational antennas,” Zh. Eksp. Teor. Fiz. 89 744-750

(1985)

Christodoulou : non-linear theory  DM(
|Ẋ1 − Ẋ2|

)
→ 0 ⇔ |X1 −X2| → const (1)
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B. Velocity J. Ehlers and W. Kundt
“Exact solutions of the gravitational field equations,”

in Gravitation: An Introduction to Current Research, edited

by L. Witten (Wiley, New York, London, 1962).

V B Braginsky and K S Thorne

“Gravitational-wave burst with memory and experimental

prospects,” Nature (London) 327 123 (1987).

L. P. Grishchuk and A. G. Polnarev

“Gravitational wave pulses with ‘velocity coded memory’,”

Sov. Phys. JETP 69 (1989) 653 [Zh. Eksp. Teor. Fiz. 96

(1989) 1153].

Ẋ → const > 0 |Ẋ(1) − Ẋ(2)| > 0 (2)

particles fly apart with constant non-zero velocity
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G. W. Gibbons S. W. Hawking “Theory of the

detection of short bursts of gravitational radiation,” Phys.

Rev. D 4 (1971) 2191.

Sandwich wave: burst of gravitational wave. Space-

time non-flat only in short interval uB ≤ u ≤ uA
of retarded time [Wavezone]. Flat both in Be-

forezone u < uB that the wave has not reached

yet, and in Afterzone uA < u where has already

passed,

(u flows from left to the right, whereas wave advances

from right to left.)
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Geodesics in Brinkmann* coordinates

(toy model in 1 space + 2 lighlike dimensions.)

plane GW

gµνX
µXν = dX2 + 2dUdV −A(U)X2dU2 (3)

X = transverse, U, V light-cone coords.

Sandwich wave: A(U) 6= 0 only in “wave zone”

UB < U < UA.

For non-tachyonic geodesic: Jacobi invariant

m
2 = gµνẊ

µẊν = const ≤ 0 . (4)

Massive: m2 < 0, Lightlike m2 = 0.

* M. W. Brinkmann, “Einstein spaces which are mapped

conformally on each other,” Math. Ann. 94 (1925) 119–

145.
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Lightlike geodesics m2 = 0 :

d2X

dU2
+

1

2
AX = 0 , (5a)

d2V

dU2
−

1

4

dA
dU

(X)2 − 1
2A

d(X2)

dU
= 0 . (5b)

V (U) horizontal lift of X(U)

Coordinate X decoupled from V . Projection into

transverse space is V -independent. Conversely,

lightlike geo determined by eqn. (5a) with U

viewed as Newtonian time ∗.

∗L. P. Eisenhart, “Dynamical trajectories and geodesics”,
Annals. Math. 30 591-606 (1928).

C. Duval, G. Burdet, H. P. Kunzle and M. Perrin,
“Bargmann Structures and Newton-cartan Theory,” Phys.
Rev. D 31 (1985), 1841-1853

C. Duval, G. W. Gibbons and P. Horvathy, “Celes-
tial mechanics, conformal structures and gravitational
waves,” Phys. Rev. D 43 (1991), 3907-3922 [arXiv:hep-
th/0512188 [hep-th]].
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Gaussian profile

AG(U) =
k
√
π
e−U

2
,

∫
AG(U) dU = k . (6)

Amplitude k = area below profile.

Earlier work (Duval et al)  particles fly apart

with non-zero velocity : VM .

Surprise: numerical investigations  fine-tuning

amplitude k CAN yield (approximate) DM .
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Fine-tuning the amplitude to k = kcrit yields DM with

m = 1 half-wave. X : trajectory , dX/dU : velocity , d2X/dU2 :

force.
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For k < kcrit trajectory undershoots and (b) for k > kcrit

overshoots before being straightened out.
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Fine-tuning amplitude yields DM with m = 2 and m = 3

half-waves as trajectories.

“Miracle” explained by : at (approximate) bound-
aries of the Wavezone UB < U < UA both

velocity and force vanish

— outside Wavezone motion governed by New-
ton’s laws.
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Further fine-tuning yields DM for “magic ampli-

tudes”, 
k1 ≈ 9.5 m = 1,
k2 ≈ 30.7 m = 2,
k3 ≈ 63.1 m = 3,
k4 ≈ 106.7 m = 4, . . .

(7)

Trajectories consist of m half-waves. Outgoing

position depends on parity:

Xout = (−1)mXin . (8)

Higher wave number requires higher amplitude.
√
km ≈ 0.78 + 2.38m. (9)
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Relation between # of half-wave trajectories in

Wavezone, m, and
√
kcrit for DM is approximately linear.
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Pöschl-Teller profile

No analytic solutions for Gauss. Shape of AG

reminiscent of Pöschl-Teller (PT) frequency,

APT (U) =
k

2 cosh2U
, (10)
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PT:PT = 1

2 cosh2U

Gauss:G = 1

π
e
-U2

Gaussian bell (dashed) approximated by Pöschl-Teller po-

tential (10) (solid line), which does admit analytic solu-

tions. Parameters chosen so that area below both profiles

be identical, equal to k.
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Writing km = 4m(m+1), geo eqn. (5a) becomes,

d2X

dU2
+
m (m+ 1)

cosh2U
X = 0 . (11)

Particle at rest before burst arrives:

X(U = −∞) = X0, Ẋ(U = −∞) = 0 . (12)

t = tanh(U)  Legendre eqn,(
1− t2

) d2X

dt2
− 2t

dX

dt
+m (m+ 1)X = 0 . (13)

DM requires X(U) → const for U → ∞ ⇒
solution of (13) extends to t = ±1  m positive
integer ⇒ solution propto Legendre polynomial,

Xm(U) = Pm(tanhU), m = 1, 2, . . . , (14)
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For Pöschl-Teller with k1 = 8 i.e. m = 1, transverse tra-

jectory consistent with DM , (cf. Gaussian).
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Transverse velocities for DM amplitudes k = km for Pöschl-

Teller profile (10), for m = 1, 2, 3.
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DM trajectories for Pöschl-Teller profile with m = 1 , . . . , 5

half-waves.

Frequency decreses with U

ω2(U) =
m (m+ 1)

cosh2U
. (15)
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DM for vertical component

For lightlike trajectories “vertical” component V (U)

(5b)

d2V

dU2
+

1

4

dA
dU

X2
)

+A
(
X1dX

1

dU

)
= 0 . (16)

is horizontal lift of the transversal trajectory,

Vnull(U) = V0 −
∫
Lnull dU (17)

where Lnull is the usual Lagrangian

Lnull = 1
2(Ẋ)2 − 1

2AX
2

of non-relativistic particle in D = 1 of unit mass

in 1+1 dim, moving in time-dependent oscillator

potential.

In Afterzone both velocity and potential vanish

⇒ Lnull ⇒ action zero along geodesic ⇒ DM

for V coordinate,

Vnull(out) = V0 = Vnull(in) (18)

More precisely: NO-DM for Vnull ! Motion purely

transverse !
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For Pöschl-Teller profile with km (shown for m = 1, 2) both

transverse, X, and vertical, V, trajectories behave con-

sistently with DM .
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Massive geodesics

Results extend to particles with nonzero relativis-

tic mass, m 6= 0.

Then∗ (17) picks up linear-in-U term,

Vm(U) = Vnull(U)− (
m

2m
)2U , (19)

where m = pv is conserved quantity generated

by Killing vector ∂V (non-relativistic mass in E-D

framework). In units where m = −1 and m = 1,

vertical coordinate (19) gets extra term −1
2U .
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∗M. Elbistan et al. Annals Phys. 418 (2020), 168180
[arXiv:2003.07649 [gr-qc]], eqn. # (VI.2).
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However switching from (lightlike) V to relativis-
tic position coordinate,

Z = V + 1
2U (20)

yields

Zm(U) = V0 = const (21)

i.e., NO-DM for Zm component !!
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|v|2out = |v|2in| .
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GW in D = 3 + 1 dimensions

D = 3 + 1 dim (coords X1, X2, U, V , U, V light-
like) :

δij dX
idXj + 2dUdV +Kij(U)XiXj dU2, (22a)

Kij(U)XiXj = 1
2A+(U)

(
(X1)2 − (X2)2

)
+A×(U)X1X2, (22b)

Lightlike Geodesics for linearly polarized (A× ≡
0) GW :

d2X1

dU2
−

1

2
AX1 = 0, (23a)

d2X2

dU2
+

1

2
AX2 = 0, (23b)

d2V

dU2
+

1

4

dA
dU

(
(X1)2 − (X2)2

)
+A

(
X1dX

1

dU
−X2dX

2

dU

)
= 0 .

(23c)

X1,2-components decoupled from V . Projection
of 4D worldline to transverse plane (X1, X2) in-
dependent of V (U).

NB: eqn (23c) ∼ horizontal lift.

In Eisenhart-Duval framework: (23a)-(23b) ∼ re-
pulsive/attractive harmonic force with (possibly
time-dependent) frequency ω2(U) = A(U).
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• Gaussian flyby profile ∼ Gibbons-Hawking’71

Kij(U)XiXj =
e−U

2

√
π

(
(X1)2 − (X2)2

)
. (24)
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• Pöschl-Teller profile

Kij(U)XiXj =
k

2 cosh2U

(
(X1)2 − (X2)2

)
. (25)

Bargmann pic ∼ anisotropic repulsive /attractive

oscillator with “time”-dependent profile. ⇒
VM . Can get DM ?
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repulsive in X1 attractive in X2  

Geodesics for Gaussian burst with for blue/red/green po-

sitions in Beforezone.

VM but no DM unless reducing to 1 dim by putting

X1(−∞) = 0 ⇒ X1(U) ≡ 0.
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DM for flyby ??

Gibbons-Hawking : flyby profile proportional to
first derivative of a Gaussian,

A(U) =
d

dU

(
k
λ
√
π
e−λ

2U2
)

(26)

Geodesics for flyby profile (26) with parameters k = λ = 1.

show VM no DM . However Miracle ! for (nu-
merically found) specific choices of parameters
DM for both components !
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For k 6= kcrit velocity effect. Transverse velocity

approx. constant but non-zero in Afterzone.

Wave too strong
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Wave too weak
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Idem for flyby - Pöschl-Teller :
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For Pöschl-Teller -flyby profile (25) (dashed line), (approx-

imate) DM for both components when amplitude is km =

4m(m+ 1), shown for m = 1 and m = 2.
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Similar for higher (d = 1,2,3 . . . ) derivatives of

Gaussian : Braginsky - Thorne d=2, “gravita-

tional collapse” d=3 . . .

For order d = 2n even : 1
2 DM, and for d = 2n+ 1

odd: DM for both components.
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CONCLUSIONS

1. DM for exceptional values of parameters which

correspond to to integer # m of standing

wave trajectories in wave zone. Full confor-

mation of Zel’dovich-Polnarev prediction

2. For DM parameter kcrit the incoming wave

first transfers some energy to the particle un-

til reaching a maximal value, but the accumu-

lated energy is then radiated away∗, as shown

for m = 1 and m = 2.
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∗Old Testament, Genesis 3:19: “pulvis es, et in pulverem
reverteris” [“you were made from dust, and to dust you
will return.”].
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Variation of the energy for Gaussian and Pöschl-Teller with

DM parameter km for m = 1 and m = 2. Almost iden-

tical plots obtained for Pöschl-Teller .


