Gravitational wave memory:
displacement or velocity effect 7
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Abstract: The scattering of particles by a burst of Grav-
itational waves (called Memory Effect) has two versions.
In the effect JQAYDR the particles fly apart with
constant but nonzero velocity. In the effect

(I, advocated by FERENEd and [REREEA, the par-

ticle's position has changed but they do not move. The

observation of the effect could be a mean to detect grav-
itational waves. Our study for (i) a Gausssian or (ii) a
Poschl-Teller profile indicates that the generic VM effect
can become, for special choices of the wave parameters
labeled by an integer, a DM . The claims of Zel’dovich and

Polnarev are confirmed.

Joint work with J. Balog, G. W. Gibbons, P-M. Zhang

P. M. Zhang and P. A. Horvathy, “Displacement within ve-
locity effect in gravitational wave memory,” [arXiv:2405.12928

[gr-ac]].
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Memory effect

A. Displacement - "~

“Radiation of gravitational waves by a cluster of super-
dense stars,” Astron. Zh. 51, 30 (1974)

... [for] two noninteracting bodies (such as satel-
lites). [... ] the distance should change, and
this effect might possibly serve as a nonresonance
detector. [... ] although distance between free

bodies will change, their BEElElli=%:lelelisA Will be-
come WeldBallelaSnEll as flyby concludes.

Elaborated by N ESTERSRECHENEHIE

“Kinematic resonance and the memory effect in free mass
gravitational antennas,” Zh. EKksp. Teor. Fiz. 89 744-750
(1985)

ICRRSESEOMBM : non-linear theory ~» DM
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“Exact solutions of the gravitational field equations,”

in Gravitation: An Introduction to Current Research, edited
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V B Braginsky and K S Thorne
“Gravitational-wave burst with memory and experimental
prospects,” Nature (London) 327 123 (1987).
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“Gravitational wave pulses with ‘velocity coded memory’,"”
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X — const >0 xD x>0 (2

particles fly apart with constant non-zero velocity
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detection of short bursts of gravitational radiation,” Phys.
Rev. D 4 (1971) 2191.

Sandwich wave: burst of gravitational wave. Space-
time non-flat only in short interval up < u < uy
of retarded time [Wavezone]. Flat both in Be-
forezone u < up that the wave has not reached
yet, and in Afterzone uy, < uw where has already
passed,

flat Beforezone

——
downwind

flat Afterzone

> -

(u flows from left to the right, whereas wave advances
from right to left.)



Geodesics in Brinkmann* coordinates

(toy model in 1 space 4+ 2 lighlike dimensions.)
plane GW

guXH XY = dX? + 2dUdV — A(U)X?dU?  (3)

X = transverse, U, V light-cone coords.

Sandwich wave: A(U) # 0 only in “wave zone”

A(V)

Up < U < Uy,. -4

For non-tachyonic geodesic: Jacobi invariant

m? = g, X*XY = const < 0. (4)
Massive: m2 < 0, Lightlike m2 = 0.
* M. W. Brinkmann, “Einstein spaces which are mapped

conformally on each other,” Math. Ann. 94 (1925) 119-
145.



Lightlike geodesics m? =

d?X
2 + AX =0, (5a)
dV  1dA 2 d(X?)

— (X)) -iAaA— -~ =0. 5b
dU?2 4dU( ) >4 dU (56)

V(U) horizontal lift of X (U)

Coordinate X decoupled from V. Projection into
transverse space is V-independent. Conversely,
lightlike geo determined by eqn. (5a) with U
viewed as Newtonian time *

*L. P. Eisenhart, “Dynamical trajectories and geodesics”,
Annals. Math. 30 591-606 (1928).

C. Duval, G. Burdet, H. P. Kunzle and M. Perrin,
“Bargmann Structures and Newton-cartan Theory,” Phys.
Rev. D 31 (1985), 1841-1853

C. Duval, G. W. Gibbons and P. Horvathy, “Celes-
tial mechanics, conformal structures and gravitational
waves,” Phys. Rev. D 43 (1991), 3907-3922 [arXiv:hep-
th/0512188 [hep-th]].



Gaussian profile

AG(U):%e_UQ, [AS@yav =k, (6)

Amplitude k£ = area below profile.

Earlier work (Duval et al) ~ particles fly apart
with non-zero velocity : VM .

Surprise: numerical investigations ~» fine-tuning
amplitude k CAN vyield (approximate) DM .

A(U) === eV, k =9.51455

Fine-tuning the amplitude to k = k. yields DM with
m = 1 half~-wave. X : trajectory, d.X /dU : velocity, /dU? :



AU) ==V, k=7
=

-4

NG

-4

-6

For k < ke trajectory undershoots and (b) for k > ket

overshoots before being straightened out.

AU) === 6, Kk =30.6603
I

207

-4

-10"

- AW)

A(U) === &V, k =63.0842
=

-4

u
- A)

Fine-tuning amplitude yields DM with m = 2 and m = 3

half-waves as trajectories.

“Miracle” explained by : at (approximate) bound-
aries of the Wavezone U < U < Uy4 both

velocity and force vanish

— outside Wavezone motion governed by New-

ton’s laws.
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Further fine-tuning vields DM for “magic ampli-
tudes’

( kl ~ 9.5 m =1,

kQ ~ 30.7 m = 2,

k3 ~63.1 m =3,

\ k4% 106.7 m =4, ...
Trajectories consist of m half-waves. Outgoing
position depends on parity:

(7)

Xout = (_1)mXin- (8)
Higher wave number requires higher amplitude.
Vkm ~ 0784+ 2.38m. (9)

Relation between # of half-wave trajectories in
Wavezone, m, and k¢ for DM is approximately linear.
11



Poschl-Teller profile

No analytic solutions for Gauss. Shape of AG
reminiscent of Poschl-Teller (PT) frequency,

k
2cosh? U’

APT(U) = (10)

— PT: ﬂPT: S

2 cosh? U

. 1 _U?
- — Gauss: A®=—e
vV IT

Gaussian bell (dashed) approximated by Pdschl-Teller po-
tential (10) (solid line), which does admit analytic solu-

tions. Parameters chosen so that area below both profiles

be identical, equal to k.
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Writing ky, = 4m(m—+1), geo eqn. (5a) becomes,

d°X m(m+4+ 1)
dU?2 cosh?2 U
Particle at rest before burst arrives:

X(U=-x)=Xqg, X(U=—-0)=0. (12)
t = tanh(U) ~ Legendre eqn,

—0. (11)

(1—t2)—X—2t—+m(m+1)X_o (13)

DM requires X(U) — const for U —» o~ =
solution of (13) extends to t = £1 ~ m positive
iInteger = solution propto Legendre polynomial,

Xm(U) = Pp(tanhU), m=1,2, ..., (14)

_ k
Alu) = 2Cosh?[u]’

— oy - A)

For Poschl-Teller with k1 = 8 i.e. m = 1, transverse tra-
jectory consistent with DM, (cf. Gaussian).
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-1.5

Transverse velocities for DM amplitudes k = k,, for Poschl-

Teller profile (10), form =1, 2, 3.

X

1.0t
—m=1
—m=2
—m=3
— U
— m=4
m=5
-1.0}
DM trajectories for Poschl-Teller profile withm =1,...,5
half-waves.
Frequency decreses with U
m(m-+1

cosh? U
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DM for vertical component

For lightlike trajectories “vertical” component V(U)
(5b)

dV  1dA _- 1dx?t
—— 4+ —X A X ——) =0. 16
dU?2 = 44U )+ ( dU) (16)
is horizontal lift of the transversal trajectory,
Vnull(U) = Vo — /‘Cnull aUu (17)

where L,,,;; IS the usual Lagrangian

Lol = %(X)Q —

of non-relativistic particle in D = 1 of unit mass
in 14+1 dim, moving in time-dependent oscillator
potential.

In Afterzone both velocity and vanish
= L, = action zero along geodesic = DM
for V coordinate,

Vnull(OUt) = Vo = Vnull(in) (18)

More precisely: N@EBIYR for V. ...; ! Motion purely
transverse !
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— X
/
/ —V
/
- _ A
-6 -4 -2 4 6
-1
-2!
-3/
A(U) = —= k = 24.

2cosh?(U)’

— X
—V
- A)

6

For Poschl-Teller profile with k,, (shown form = 1, 2) both
transverse, X, and vertical, V, trajectories behave con-
sistently with DM .
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Massive geodesics

Results extend to particles with nonzero relativis-
tic mass, m = 0.

Then* (17) picks up linear-in-U term,

Va(U) = Vo (U) = (5

m

where m = py IS conserved quantity generated

by Killing vector 9y, (non-relativistic mass in E-D

framework). In units where m = —1 and m = 1,
vertical coordinate (19) gets extra term —3U.

Y2 U . (19)

— m=1

*M. Elbistan et al. Annals Phys. 418 (2020), 168180
[arXiv:2003.07649 [gr-qc]], ean. # (VI.2).
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However switching from (lightlike) V' to relativis-
tic position coordinate,

Z=V+1U (20)
vields
Znw(U) = Vy = const (21)
e, for Z,, component !

— m=1

........ m=3

velocity |v| = \/’032j + v2
2 2
‘v‘out — ‘U‘zn| y

18



GW in D =3+ 1 dimensions

D =341 dim (coords X1, X2 U, V, U, V light-
like) :

57 dX'dXI + 2dUdV + K;(U)X'X7 dU?, (22a)
Kiy()X'XT = 34, () ((x1)? - (x2)2)

+ A (U) X1 X2, (22b)

Lightlike Geodesics for linearly polarized (Ax =
0) GW :

o EAxl =0, (23a)
2v 2

C;gz - %AXQ = 0, (23b)
AV  1dA dX1 dX?

e ineadi Xl 2 X2 2 Xl— . X2— —

dU2+4dU(( )7~ (X7) )+A( dU dU)

(230)

X1.2_components decoupled from V. Projection
of 4D worldline to transverse plane (X1, X?) in-
dependent of V(U).

NB: egn (23c) ~ horizontal lift.

In Eisenhart-Duval framework: (23a)-(23b) ~ re-
pulsive/attractive harmonic force with (possibly
time-dependent) frequency w?(U) = A(U).
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e Gaussian flyby profile ~ [GiBEOHSHHEMRINORAN

K (U)X'X7 = e\_/; (x1)2 - (x2)?). | (24)

e POschl-Teller profile

k
2 cosh?

K (U)X'X7 = U((Xl)2 _ (X2)2>. (25)

Bargmann pic ~ anisotropic |repulsive|/attractive
oscillator with “time” -dependent profile. =
VM. Can get DM 7
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repulsive in X1 attractive in X2 ~

-

=10 -5 5 10

=10 =5 10

=T par-

Geodesics for Gaussian burst with for blue/red/green po-
sitions in Beforezone.

VM but DM unless reducing to 1 dim by putting
Xl(—0)=0 = XI(U)=o0.
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DM for flyby 7?7

ICIBBORSSREWRIAG]: fvoy profile proportional to

first derivative of a Gaussian,

d A 22
A = — | k——e¢
(U) <k\/% ) (26)

dU

4
/

\
\‘/

z

-10 -5 ’ 5 10
\ 7
05 \/

Geodesics for flyby profile (26) with parameters k = \ = 1.

show VM J[ilg] DM . However NIIEIEERE for (nu-

merically found) specific choices of parameters
for both components !

Ax(u) = i(ﬁ e¥") A=0.5 k=32.6174

i

_x!
10" x
-—- HAx(u)

\
\
' \
-10 -5 \4
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For k # ke, effect. Transverse velocity

approx. constant but in Afterzone.

FAp(u) = L(EL o2 A=0.5, k=40
du ‘/:

10

AN
/ —x
,/ \ o X2
-10 -5 \ ,~5 10Y - A
\ /
NV
_5 \/

Wave too strong o

An(u) = L(LL ¥ =05, k=20
du ‘/—

k > ket overshoot

4
/’~\2 )
Y, \ /\ — X
A —x
10 -5 A} R 10 Y - A
-2 \\ //
-4
Wave too weak k < ke undershoot

Idem for flyby - Poschl-Teller
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|5‘((U)= L(—k—) k=29.056

dU "2 Cosh? (U)

_x
X2

o e—— \/ ‘ V.. aw

A(U) = L(—& =), k=84.0971

dU "2 Cosh?

r

/30
;o\

/ — X'
ur- S — \/2/’ 2 s Y ___awv
/

-10‘ /
|
|

-30/ \,

For Poschli-Teller-flyby profile (25) (dashed line), (approx-
imate) DM for both components when amplitude is k,, =
A4m(m + 1), shown for m =1 and m = 2.

AU) = (=), k=326174

dU‘/;

o |
_x
/\/ /\ — X
— '
a2

- AW)

NV ¢

=50}
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Similar for higher (d = 1,2,3...) derivatives of

Gaussian : |[Braginsky = Thorne d=2, “gravita-

tional collapse” d=3 ...

For order E3d cven : 1 DM, and for IR 0RmE!

odd: DM for both components.
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CONCLUSIONS

1. DM for exceptional values of parameters which
correspond to to integer # m of standing
wave trajectories in wave zone. Full confor-
mation of Zel’dovich-Polnarev prediction

2. For DM parameter k..;; the incoming wave
first transfers some energy to the particle un-
til reaching a maximal value, but the accumu-
lated energy is then radiated away™*, as shown
form =1 and m = 2.

|y{(u) =? e k= 9.51455| |.7((u) =? e k= 30.6602|
- -

- E=E+E,

— Ec=(12X)2

— E,=(1/4)A(U)X*2

*Old Testament, Genesis 3:19:

- E=E(+E,
— Ex=(12)(X)A2
— E, = (1/4)A(U)X2

“pulvis es, et in pulverem

reverteris” [“you were made from dust, and to dust you

will return.”].



FAp(u) = di(—“ &), A=0.5, k=32.6174
u
I
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\' — Ei= L2 LKy
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\ _E=E+E,
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Variation of the energy for Gaussian and Pbschl-Teller with

DM parameter k,, form —= 1 and m = 2. Almost iden-

tical plots obtained for Pbschl-Teller.



