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Basics

Let M be a manifold with boundary ∂M. One speaks about
anomaly in�ow when an anomaly on M can be expressed through
an anomaly in a theory on ∂M. Original motivation [Callan and
Harvey, 1985]: a way to obtain anomaly-free theories.

Milestone in Mathematics: the Atiyah�Patodi�Singer theorem
[1975] which relates the index of a Dirac operator on M to the η
invariant (parity anomaly) for an e�ective Dirac operator on ∂M.
(Non-local boundary conditions.)

Renewed interest: Witten and Yonekura [2019], phase of the Dirac
determinant through the η invariant on ∂M. (Non-hermitian and
not strongly elliptic boundary conditions).
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What can one say about anomaly in�ow with local hermitian
strongly elliptic boundary conditions?
[Ivanov & D.V., JHEP (2022)]

Example: parity anomaly

Let /D be a Dirac operator with eigenvalues λ. The η function is

η(s, /D) =
∑
λ>0

λ−s −
∑
λ<0

(−λ)−s

with s being a complex parameter. (We are on a Euclidean
manifold.) For <s su�ciently large, the sum above is convergent
and de�nes a meromorphic function on C. At s = 0, η(0, /D)
de�nes the spectral asymmetry of /D which is the parity anomaly.
Note: the parity anomaly is not a smooth functional of background
�elds.
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Th exponentiated η invariant

E /D = exp
(
−iπ(η(0, /D) + dimKer /D)

)
is smooth.
The heat kernel expansion at t → +0:

Tr

(
Qe−t /D

2
)
'
∞∑
k=0

t
k−n
2 ak(Q, /D

2
)

where n = dimM, Q is a matrix-valued function.
Consider a variation /D → /D + δ /D. If the eigenvalues λ do not
cross 0,

δη(0, /D) = − 2√
π
an−1(δ /D, /D

2
)

This equation de�nes all variations of E /D .
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Physics

η(0, /D) de�nes the parity anomaly (a parity odd part of the
e�ective action) and the phase of the partition function in
Euclidean theory.

For fermions in a 3D topologically trivial space in an external
electromagnetic �eld the parity anomaly is a k = ±1/2
Chern-Simons action (corresponding to anomalous Hall
conductivity).

Parity anomaly is always gauge invariant, also with respect to
large gauge
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Boundaries

Let n = dimM be odd and γ? be the chirality matrix. Let
∂M = ∪α∂Mα consist of several connected components. For a
Dirac type operator the boundary conditions are of the form

Π−ψ|∂M = 0

where Π− is a rank 1/2 projector. A good choice is a local projector

Π− =
1

2
(1− χ), χ = iεαγ∗γ

n,

where εα = ±1, γn is a γµnµ, nµ is an inward pointing unit normal
to the boundary. These conditions are called the bag boundary
conditions. One can check that for these conditions the normal
component of the fermion current ψ†γnψ vanishes on the boundary.
Thus the Dirac operator is hermitian.
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Let us assume that /D is just the usual massless Dirac operator with
a gauge connection and M has a product structure near the
boundary.
Near the boundary the Dirac operator reads (in a suitable basis)

/D =

(
D i∂n
i∂n −D

)
One can show that the boundary conditions kill either upper or
lower components of the spinor. The Dirac operator restricted to
the space of boundary data is Dα = −εαD.
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One can also show that E( /D) is a product of contributions from
components of the boundary, and that each contribution is
independent of the bulk geometry. Each contribution can be thus
computed for any choice of the bulk which make the spectrum
simple. [This bulk appears to be a direct product with an interval.]

E( /D)2 = C
∏
α

E(Dα)

where C has vanishing local variations (i.e., it is topological).
This results is consistent with explicit calculations for n = 4.

Note E2 in the formula above!
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n is odd. To de�ne bag boundary conditions we need a chirality
matrix which anticommutes with all gamma matrices. Thus we
have to double the number of fermions. The chirality matrix then
depends on an angle θ which may be di�erent (= θα) on di�erent
components of the boundary.
By proceeding similarly to the case of even n one gets

E( /D) = exp

(
−iπN0 + 2πi

∑
α

θαInd(D, γn)

)

where N0 is the number of zero modes of /D when all θα = 0.

Both results are surprisingly simple and quite �holographic�.
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Conformal anomaly

Let n be odd. Consider a scalar �eld on M subject to Dirichlet or
Neumann boundary conditions on ∂Mα. Again, we assume a
product structure near the boundary. Let L be a scalar Laplace
operator with conformal coupling. Near the boundary,
L = −∂2n + L̂. One can show that if the function f has vanishing
normal derivatives,

an(f , L) =
1

4

∑
α

(
∓an−1(f , L̂)

)
where ∓ corresponds to Dirichlet/Neumann bc.
L.h.s. is the conformal anomaly, while r.h.s. is not quite since L̂ is
not conformal in n − 1 dimensions.
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Boundary anomalies and boundary states

Boundary states are the eigenfunctions of the Dirac operator which
decay exponentially fast with the distance from the boundary. Thus
we need a mass (which de�nes the fallo� speed) and noncompact
manifolds. However, since the formulas for variation of the η
function work for localized variations we need compact manifolds.
A way out [Fresneda, Souza and D.V. (2023)]: consider an �in�nite
radius limit�.
In this limit, there is indeed a relation between boundary anomalies
and boundary states if there is a lower bound for the localization
distance of boundary modes (bag boundary conditions). There is
no suche relation otherwise (Example: chiral bag boundary
conditions, Fermi-arc like states).
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Comments and Remarks

I. (Technical) The requirement of product structure near the
boundary may be

weakened in low dimensions by considering all possible
invariants which may enter the heat kernel coe�cients;

replaced by the requirement of being conformal to a product
structure in higher dimensions.

II. (Domain walls) Domain walls may be of many di�erent types.
The APS theorems have been derived in two cases: when the gauge
�eld jumps on the wall and when the mass function jumps. (Ask
me for the references.)
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