Anomalous Casimir effect in an expanding ring

* B. Bermond, A. Grushín and, D. Carpentier (2024), ArXív 2402.08610

Conformal anomalies: Theory and applications 2024

1. Out of equilibrium thermodynamics

 Relativistic physics in condensed
 matter: From BEC to quantum hall edges

3. Gravitational anomalies and the anomalous Casimir effect

Conclusion/Outlook

Oulline

1. Out of equilibrium thermodynamics

1.a. Out of equilibrium classical thermodynamics

1.b. Out of equilibrium thermodynamics in quantum physics

Non-equilibrium thermodynamics

Out of equilibrium systems

Possible reasons:

Extremely slow (beyond experimental reach) relaxation processes

E.g. Critical slowing down, Glassy dynamics.

E.g. Active matter,

Thermodynamics based on equilibrium properties

Driven systems (Energy injection)

Quenched systems

Integrability

Too many constant of motion inhibit equilibration

E.g. 1D Bosonic gases

Non-equilibrium thermodynamics

Possible reasons:

Extremely slow (beyond experimental reach) relaxation processes

E.g. Critical slowing down, Glassy dynamics.

Thermodynamics based on equilibrium properties

Out of equilibrium systems

Integrability

Too many constant of motion inhibit equilibration

E.g. 1D Bosonic gases

1. Out of equilibrium thermodynamics

1.a. Out of equilibrium classical thermodynamics

1.b. Out of equilibrium thermodynamics in quantum physics

Out of equilibrium quantum physics

Driven quantum systems

- Smooth evolution of system parameters over time
- **E.g.** Hamiltonian parameters, external parameters(temperature, environment), Floquet systems

Questions:

Does the system remains in its ground state?

Adiabatic evolution? Landau Zener transition?

Out of equilibrium quantum physics (In 1+1 dimensions)

Quantum quenches

Sudden change of system parameters

E.g. Hamiltonian parameters, external parameters(temperature, environment)

Questions:

Will the system eventually thermalize?

A quantum Newton cradle

TKÍNOSHÍTA Et. Al. (2006)

1D Bose Einstein condensate set out of equilibrium by a laser pulse

No sign of thermalization

What does the asymptotic steady state looks like? **Boltzmann? Others?**

Out of equilibrium quantum physics (In 1+1 dimensions)

Quantum quenches

- Sudden change of system parameters
- E.g. Hamiltonian parameters, external parameters(temperature, environment)
- Strategies: Generalized hydrodynamics
 - Fast local equilibration allow one to define local thermodynamics quantities
 - Local conservation equations defines time evolution of these local quantities

B. Doyon & D. Bernard (2016)

Example of follow up questions: How to include defects?

Result compared with exact computation done with Bethe ansatz/ exact diagonalisation

For transverse field Ising model, Luttinger liquids ...

Out of equilibrium quantum physics (In 1+1 dimensions)

Non-equilibbrium quantum systems

This talk:

- Within generalized hydrodynamics
- 1+1D out-of-equilibrium systems: driven by a time-dependent geometry

How do gravitational anomalies modifies the thermodynamic properties of such a non-equilibrium system?

2. Relativistic physics in condensed matter: From BEC to quantum hall edges

2.a. Curved spacetimes in the laboratory: Analog gravity in Bose-Einstein condensates

Hall edges

Analog expanding universe in a Bose Einstein Condensate

2.b. Chiral fields and curved spacetimes in quantum

W.G. Unruh

Volume 46

Experimental Black-Hole Evaporation?

W. G. Unruh Department of Physics, University of British Columbia, Vancouver, British Columbia V6T2A6, Canada (Received 8 December 1980)

General idea:

25 MAY 1981

NUMBER 21

Black holes physics can be reproduced in classical hydrodynamics

W.G. Unruh

Volume 46

Experimental Black-Hole Evaporation?

W. G. Unruh Department of Physics, University of British Columbia, Vancouver, British Columbia V6T2A6, Canada (Received 8 December 1980)

General idea:

Singulari

25 MAY 1981

NUMBER 21

Black holes physics can be reproduced in classical hydrodynamics

Second quantized Hamiltonian

$$\mathcal{H} = \int d\vec{x} \, \hat{\Psi}^{\dagger}(\vec{x},t) \begin{bmatrix} -\frac{\hbar^2}{2m} \vec{\nabla}^2 + V_{ext}(\vec{x}) \end{bmatrix} \hat{\Psi}(\vec{x},t) + \frac{1}{2} \int d\vec{x} \, d\vec{y} \, \hat{\Psi}^{\dagger}(\vec{x},t) \hat{\Psi}^{\dagger}(\vec{y},t) \\ \mathbf{V}\left(\vec{x}-\vec{y}\right) \, \hat{\Psi}(\vec{y},t) \hat{\Psi}(\vec{x},t) \\ \mathbf{Potential} \\ \mathbf{V}\left(\vec{x}\right) = \kappa \delta\left(\vec{x}\right) \end{aligned}$$

Second quantized Hamiltonian

$$\mathcal{H} = \int d\vec{x} \, \hat{\Psi}^{\dagger}(\vec{x}, t) \begin{bmatrix} -\frac{\hbar^2}{2m} \vec{\nabla}^2 + V_{ext}(\vec{x}) \\ \mathbf{\nabla}^2 + V_{ext}(\vec{x}) \end{bmatrix} \hat{\Psi}(\vec{x}, t) + \frac{1}{2} \int d\vec{x} \, d\vec{y} \, \hat{\Psi}^{\dagger}(\vec{x}, t) \hat{\Psi}^{\dagger}(\vec{y}, t) \begin{bmatrix} V\left(\vec{x} - \vec{y}\right) \hat{\Psi}(\vec{y}, t) \hat{\Psi}(\vec{x}, t) \\ \mathbf{\nabla}^2 + V_{ext}(\vec{x}) \end{bmatrix} \hat{\Psi}(\vec{x}, t) + \frac{1}{2} \int d\vec{x} \, d\vec{y} \, \hat{\Psi}^{\dagger}(\vec{x}, t) \hat{\Psi}^{\dagger}(\vec{y}, t) \begin{bmatrix} V\left(\vec{x} - \vec{y}\right) \hat{\Psi}(\vec{y}, t) \hat{\Psi}(\vec{x}, t) \\ \mathbf{\nabla}^2 + V_{ext}(\vec{x}) \end{bmatrix} \hat{\Psi}(\vec{x}, t) \begin{bmatrix} V\left(\vec{x} - \vec{y}\right) \hat{\Psi}(\vec{y}, t) \hat{\Psi}(\vec{x}, t) \\ \mathbf{\nabla}^2 + V_{ext}(\vec{x}) \end{bmatrix} \hat{\Psi}(\vec{x}, t) \end{bmatrix} \hat{\Psi}(\vec{x}, t) + \frac{1}{2} \int d\vec{x} \, d\vec{y} \, \hat{\Psi}^{\dagger}(\vec{x}, t) \hat{\Psi}^{\dagger}(\vec{y}, t) \begin{bmatrix} V\left(\vec{x} - \vec{y}\right) \hat{\Psi}(\vec{y}, t) \hat{\Psi}(\vec{x}, t) \\ \mathbf{\nabla}^2 + V_{ext}(\vec{x}) \end{bmatrix} \hat{\Psi}(\vec{x}, t) + \frac{1}{2} \int d\vec{x} \, d\vec{y} \, \hat{\Psi}^{\dagger}(\vec{x}, t) \hat{\Psi}^{\dagger}(\vec{y}, t) \begin{bmatrix} V\left(\vec{x} - \vec{y}\right) \hat{\Psi}(\vec{y}, t) \hat{\Psi}(\vec{x}, t) \\ \mathbf{\nabla}^2 + V_{ext}(\vec{x}) \end{bmatrix} \hat{\Psi}(\vec{x}, t) + \frac{1}{2} \int d\vec{x} \, d\vec{y} \, \hat{\Psi}^{\dagger}(\vec{x}, t) \hat{\Psi}^{\dagger}(\vec{y}, t) \hat{\Psi}(\vec{y}, t) \hat{\Psi}(\vec{x}, t)$$

Mean field solution (Gross-Pitaevskii equation)

$$\hbar \partial_t \psi = \left(-\frac{\hbar^2}{2m} \overrightarrow{\nabla}^2 + V_{ext}(\overrightarrow{x}) + \kappa \psi \right)$$

 $\psi^{\dagger}\psi \end{pmatrix}\psi$ Wave function of the condensate $\psi(\vec{x},t) = \left\langle \hat{\Psi}(\vec{x},t) \right\rangle$

Mean field solution (Gross-Pitaevskii equation)

$$\hbar\partial_t \psi = \left(-\frac{\hbar^2}{2m} \overrightarrow{\nabla}^2 + V_{ext}(\overrightarrow{x}) + \kappa \psi^{\dagger} \psi \right)$$

Assuming
$$\psi = \sqrt{n}e^{i\frac{\theta}{\hbar}}$$

$$\begin{cases} \partial_t n + \frac{1}{m} \overrightarrow{\nabla} \cdot \left(n \overrightarrow{\nabla} \theta \right) = 0, \\ \partial_t \theta + \frac{1}{2m} \left(\overrightarrow{\nabla} \theta \right) \cdot \left(\overrightarrow{\nabla} \theta \right) + V_{ext} + \kappa n - \frac{\hbar^2}{2m} \end{cases}$$

Wave function of the condensate $\psi(\vec{x},t) = \left\langle \hat{\Psi}(\vec{x},t) \right\rangle$

Quantum potential V_q

In classical hydrodynamics

$$\vec{v} = \vec{\nabla} \phi$$

 $\begin{cases} \partial_t \rho - \vec{\nabla} \cdot \left(\rho \vec{\nabla} \phi\right) = 0, \\ \partial_t \phi - h(p) - \frac{1}{2} \left(\vec{\nabla} \phi\right) \cdot \left(\vec{\nabla} \phi\right) = 0 \end{cases}$

Relativistic waves in a curved spacetimes

Setting
$$\begin{cases} n = n_0 + \delta n, \\ \theta = \theta_0 + \delta \theta, \end{cases}$$
 assuming $\frac{k}{2\pi}$

Sound wave

$$\partial_t \delta n + \frac{1}{m} \overrightarrow{\nabla} \cdot \left(\delta n \overrightarrow{\nabla} \theta_0 + n_0 \overrightarrow{\nabla} \delta \theta \right) = 0,$$

$$\partial_t \delta \theta + \frac{1}{m} \left(\overrightarrow{\nabla} \delta \theta \right) \cdot \left(\overrightarrow{\nabla} \theta_0 \right) + \kappa \delta n = 0$$

$$\partial_{\mu} \left[f^{\mu\nu} \partial_{\nu} \left(\delta \theta \right) \right] = 0 \qquad \text{with,} \qquad f^{\mu\nu} = \sqrt{\det \left(g_{\rho\sigma} \right)} g^{\mu\nu} = \frac{n_0}{m c_s^2} \begin{pmatrix} 1 & -m\partial_i \theta_0 \\ -m\partial_i \theta_0 & -c_s^2 \delta^{ij} + m^2 \partial_i \theta_0 \partial_j \theta_0 \end{pmatrix}$$
Speed of sound $c_s^2 = \frac{\kappa n_0}{m}$

$$\xi^{-1}$$
Healing length $\xi = \frac{\hbar}{\sqrt{m\kappa n_0}}$
Background flow
$$\partial_t n_0 + \frac{1}{m} \vec{\nabla} \cdot \left(n_0 \vec{\nabla} \theta_0\right) = 0,$$

$$\partial_t \theta_0 + \frac{1}{2m} \left(\vec{\nabla} \theta_0\right) \cdot \left(\vec{\nabla} \theta_0\right) = V_q - V_{ext} - \kappa n_0$$

Ex: Hawking radiation in Bose Einstein condensates

Ex: Hawking radiation in Bose Einstein condensates

Ex: Analog de Sitter universe in Bose-Einstein condensates S.Weinfurtner (2004)

<u>1+1D</u>

S.Eckel et. Al. (2021)

<u>2+1D</u>

Ex: Hawking radiation in Bose Einstein condensates

C. Viermann et al. (2022)

2. Relativistic physics in condensed matter: From BEC to quantum hall edges

2.a. Curved spacetimes in the laboratory: Analog gravity in Bose-Einstein condensates

2.b. Chiral fields and curved spacetimes in quantum Hall edges

Integer quantum Hall effect: Historics

Integer quantum Hall effect

K. Von Klitzing

K. Von Klítzíng (1980) Nobel Príze 1985

Integer quantum Hall effect:

A theory on the edges

In the presence of B, levels split into quantize non dispersive, Landau levels

Deformation of the level by scalar potentials/confinement

Linear dispersion on the edges with $\vec{v} = \overrightarrow{\nabla} V \wedge \overrightarrow{B}$

Integer quantum Hall effect:

A theory on the edges

In the presence of B, levels split into quantize non dispersive, Landau levels

Deformation of the level by scalar potentials/confinement

Linear dispersion on the edges with

$$\vec{v} = \overrightarrow{\nabla} V \wedge \overrightarrow{B}$$

Possibility to shape space-time by modifying the potential V in space and time

 x^1

Integer quantum Hall effect:

A theory on the edges

In the presence of B, levels split into quantize non dispersive, Landau levels

Deformation of the level by scalar potentials/confinement

3.a. The Casimir effect, or how confinement modify vacuum properties of a system Curved space time analog and the anomalous Casimir effect

3.d. Extension to velocity modulated systems

3. Gravitational anomalies and the anomalous Casimir effect

3.b. Casimir effect in expanding ring: First predictions and

3.c. Another geometric effect: gravitational anomalies and

The Casimir effect

H. Casimir used quantum mechanics to investigate Wan der Walls forces between polarizable molecules in 1948

H. Casimir

Casímír (1948)

The Casimir effect

- Attractive force between two uncharged metal plates when they are very close (a few nm)
- Can be interpreted as a modification of a quantum vacuum properties in the presence of geometrical constraints (here confinement)

H. Casimir

$$F = -\frac{\hbar c \pi^2 A}{240 d^4}$$

Casímír (1948)

The Casimir effect: Experimental verifications?

Hard to test experimentally within H.Casimir setup

First experimental evidence by S.K.Lamoureux at Yale in 1997, and reproduced by Mohideen and Roy in 1999, using atomic force microscopy

Mohídeen & Roy (1999)

The Casimir effect: Experimental verifications?

- Hard to test experimentally within H.Casimir setup
- First experimental evidence by S.K.Lamoureux at Yale in 1997, and reproduced by Mohideen and Roy in 1999, using atomic force microscopy
- Finally verified between metallic plates in 2002 by Bressi et al

Bressí et al (2002)

The Casimir effect: Modern experiments

Other type of materials

Systems beyond static equilibrium

Effect of finite chemical potential and temperature gradients

C. Henkel et al (2002) K. Chen § S. Fan (2016)

Generation of photon from vacuum: **Dynamical Casimir effect**

G. Moore (1970)

Generalizing Casimir arguments in a d+1 dimensional cavity of size L

 $\varepsilon = d \, . \, P \propto L^{-d-1}$

J. Ambjørn & S. Wolfram (1983)

Generalizing Casimir arguments in a d+1 dimensional cavity of size L

 $\varepsilon = d \cdot P \propto L^{-d-1}$

In particular, for a 1+1 dimensional ring

J. Ambjørn & S. Wolfram (1983)

Casimir energy density: $\mathcal{E}_{\mathscr{C}}$

In particular, for a 1+1 dimensional ring

Generalization to interacting 1+1 dimensional theories

Casimir energy density: $\mathcal{E}_{\mathscr{C}}$

Central charges

In particular, for a 1+1 dimensional ring

Generalization to interacting 1+1 dimensional theories

Central charges

3. Gravitational anomalies and the anomalous Casimir effect

3.a. The Casimir effect, or how confinement modify vacuum properties of a system

3.b. Casimir effect in expanding ring: First predictions and Curved space time analog

3.c. Another geometric effect: gravitational anomalies and and the anomalous Casimir effect 3.d. Extension to velocity modulated systems

What if the radius R depends on time?

Instantaneous Casimir energy density: $\mathcal{E}_{\mathscr{C}}(t)$

What if the radius R depends on time?

Instantaneous Casimir energy density: $\mathcal{E}_{\mathscr{C}}(t)$

What if the radius R depends on time?

Curved spacetime description

$$\mathrm{d}s^2 = c_s^2 \mathrm{d}t^2 - R(t)^2 \mathrm{d}\theta^2$$

What if the radius R depends on time?

Curved spacetime description $\mathrm{d}s^2 = c_s^2 \mathrm{d}t^2 - R(t)^2 \mathrm{d}\theta^2$ Similar to the Friedman-Lemaitre-Robertson-Walker metric $\mathrm{d}s^2 = c_s^2 \mathrm{d}t^2 - a(t)^2 \mathrm{d}x^2$ with $dx = R_0 d\theta$ and $a(t) = \frac{R(t)}{R_0}$ A. Friedman (1922) G. Lemaître (1927) H. Robertson (1929)

A. Walker (1935)

Invariance of a theory in curved spacetime

Properties of the momentum-energy tensor

Momentum-energy tensor

Metric tensor
$$g_{\mu\nu} = \begin{pmatrix} f_1(t) & 0\\ 0 & -f_2(t) \end{pmatrix}$$

Invariance of a theory in curved spacetime

Properties of the momentum-energy tensor

▶ Conformal/Weyl invariance $\mathcal{T}^{\mu}_{\mu} = 0$

Metric tensor

$$g_{\mu\nu} = \begin{pmatrix} f_1(t) & 0 \\ 0 & -f_2 \end{pmatrix}$$

Invariance of a theory in curved spacetime

Properties of the momentum-energy tensor

Lorentz invariance $\mathcal{T}^{\mu\nu} - \mathcal{T}^{\nu\mu} = 0$

Metric tensor
$$g_{\mu\nu} = \begin{pmatrix} f_1(t) & 0\\ 0 & -f_2 \end{pmatrix}$$

Momentum-energy tensor

$$\mathcal{T}^{\mu}_{\nu} = \begin{pmatrix} \varepsilon & \sqrt{f_1/f_2} \frac{1}{c_s} J_{\varepsilon} \\ -\sqrt{f_2/f_1} c_s \Pi & -p \end{pmatrix}$$

Invariance of a theory in curved spacetime

Properties of the momentum-energy tensor

Diffeomorphism invariance

Momentum-energy tensor

 $\mathcal{T}^{\mu}{}_{\nu} = \begin{pmatrix} \varepsilon & \sqrt{f_1/f_2} \frac{1}{c_s} J_{\varepsilon} \\ -\sqrt{f_2/f_1} c_s \Pi & -p \end{pmatrix}$

Metric tensor
$$g_{\mu\nu} = \begin{pmatrix} f_1(t) & 0\\ 0 & -f_2 \end{pmatrix}$$

Energy conservation

Momentum conservation

- ▶ Conformal/Weyl invariance $\mathcal{T}^{\mu}_{\mu} = 0$
- ▶ Lorentz invariance $\mathcal{T}^{\mu\nu} \mathcal{T}^{\nu\mu} = 0$
- ▶ Diff. invariance $\nabla_{\mu} \mathcal{T}^{\mu\nu} = 0$

Solution from a uniform initial state

$$\varepsilon = p \propto \frac{1}{f_2(t)}$$

Looking into asymptotics

Metric tensor $g_{\mu\nu} = \begin{pmatrix} f_1(t) & 0 \\ 0 & -f_2(t) \end{pmatrix}$

$$\varepsilon = p$$

$$v_F \Pi = v_F^{-1} J_{\varepsilon}$$
Energy conser
$$\int \partial_t (f_2 \varepsilon) + \partial_x \left(\sqrt{f_1 f_2} J_{\varepsilon}\right) = 0$$

$$\int \partial_t (f_2 \Pi) + \partial_x \left(\sqrt{f_1 f_2} p\right) = 0$$
Momentum conser

3. Gravitational anomalies and the anomalous Casimir effect

3.a. The Casimir effect, or how confinement modify vacuum properties of a system

Curved space time analog

3.c. Another geometric effect: gravitational anomalies and and the anomalous Casimir effect

3.d. Extension to velocity modulated systems

3.b. Casimir effect in expanding ring: First predictions and

Anomalies in physics

- Conformal/Weyl invariance
- Lorentz invariance
- Diff. invariance

Anomaly: symmetry of the Hamiltonian, but not of the field theory Signals anomalous quantum fluctuations

Conservation law spoiled by quantum fluctuations

Relativistic quantum theory in a curved spacetime : Gravitational anomalies: anomalous vacuum fluctuations induced by the curvature of spacetime

Symmetries of the Hamiltonian / action

Bertlmann, Anomalies ín Quantum Field Theory (2001)

- Relativistic physics in **flat** spacetime A single energy scale $\mathcal{E}_{\mathscr{C}} \propto 1/L^2$ Relativistic physics in curved spacetime • One new energy scale $\hbar v_F \mathcal{R}$ Spacetime scalar curvature
- Question: How does this new energy scale affect the conservation equations ?

Consequences of the new energy scale $\frac{\hbar c_s}{48\pi}$ on the conservation laws

Bertlmann, Anomalies in Quantum Field Theory (2001)

 $(\mathcal{T}^{\mu}_{\mu} = \mathscr{C}_{\nu})$

Metric tensor

$$g_{\mu\nu} = \begin{pmatrix} f_1(t) & 0 \\ 0 & -f_2(t) \end{pmatrix}$$

$$\mathscr{R} = \frac{1}{c_s^2} \left(-\frac{\partial_t^2 f_2}{f_1 f_2} + \frac{1}{2} \frac{\partial_t f_2}{f_1 f_2} \left[\frac{\partial_t f_1}{f_1} + \frac{\partial_t f_2}{f_1 f_2} \right] \right)$$

$$\int_{W} \frac{\hbar c_{s}}{48\pi} \mathcal{R}$$

$$\frac{\hbar c_{s}}{48\pi} \mathcal{R}$$

Consequences of the new energy scale $\frac{\hbar c_s}{48\pi}$ on the conservation laws

Bertlmann, Anomalies in Quantum Field Theory (2001)

Lorentz invariance $c_s \Pi = c_s^{-1} J_{\varepsilon}$

 $\left(\mathcal{T}^{\mu\nu} - \mathcal{T}^{\nu\mu} = 0\right)$

Metric tensor

$$g_{\mu\nu} = \begin{pmatrix} f_1(t) & 0 \\ 0 & -f_2(t) \end{pmatrix}$$

$$\mathscr{R} = \frac{1}{c_s^2} \left(-\frac{\partial_t^2 f_2}{f_1 f_2} + \frac{1}{2} \frac{\partial_t f_2}{f_1 f_2} \left[\frac{\partial_t f_1}{f_1} + \frac{\partial_t f_2}{f_1 f_2} \right] \right)$$

Consequences of the new energy scale $\frac{\hbar c_s}{48\pi}$ on the conservation laws

Bertlmann, Anomalies in Quantum Field Theory (2001)

$$\begin{bmatrix} -\partial_t (f_2 \Pi) + \partial_x (f_2 \Pi) \\ \partial_t (f_2 \varepsilon) + \partial_x (f_2 \varepsilon) \\ (\nabla \nabla^{\mu\nu} - \varepsilon) \end{bmatrix}$$

Metric tensor

$$g_{\mu\nu} = \begin{pmatrix} f_1(t) & 0 \\ 0 & -f_2(t) \end{pmatrix}$$

$$\mathscr{R} = \frac{1}{c_s^2} \left(-\frac{\partial_t^2 f_2}{f_1 f_2} + \frac{1}{2} \frac{\partial_t f_2}{f_1 f_2} \left[\frac{\partial_t f_1}{f_1} + \frac{\partial_t f_2}{f_1 f_2} \right] \right)$$

Solution from a uniform initial state

$$\mathcal{T}^{\mu}{}_{\nu} = -\frac{1}{2} \begin{pmatrix} \mathcal{C}_{w} & \sqrt{f_{1}/f_{2}} \frac{1}{c_{s}} \mathcal{C}_{g} \\ -\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) \longrightarrow \mathcal{T}^{\mu}{}_{\nu} = -\frac{1}{2} \begin{pmatrix} \mathcal{C}_{w} & \sqrt{f_{1}/f_{2}} \frac{1}{c_{s}} \mathcal{C}_{g} \\ -\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{g} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{w} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} \mathcal{C}_{w} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_{1}} c_{s} c_{w} & -\mathcal{C}_{w} \end{pmatrix} \mathcal{E}_{\mathcal{C}}(t) + \left(-\sqrt{f_{2}/f_$$

B.Bermond, A.Grushín and, D.Carpentier (2024), ArXív 2402.08610

Metric tensor
$$g_{\mu\nu} = \begin{pmatrix} f_1(t) & 0\\ 0 & -f_2 \end{pmatrix}$$

$$\varepsilon = p + \mathscr{C}_{w} \frac{\hbar c_{s}}{48\pi} \mathscr{R}$$

$$c_{s} \Pi = c_{s}^{-1} J_{\varepsilon} \qquad \text{Source of momentu}$$

$$0 \qquad -\partial_{t} \left(f_{2} \Pi\right) + \partial_{x} \left(\sqrt{f_{1} f_{2}} p\right) = \mathscr{C}_{g} \frac{\hbar}{96\pi} f_{2} \partial_{t} \mathscr{R}$$

$$\partial_{t} \left(f_{2} \varepsilon\right) + \partial_{x} \left(\sqrt{f_{1} f_{2}} J_{\varepsilon}\right) = 0$$

$$\mathcal{E} \qquad \epsilon_{\overline{\mathscr{R}}} = \frac{\hbar c_s}{48\pi} \overline{\mathscr{R}} = \frac{\hbar c_s}{48\pi} \frac{1}{f_2(t)} \int_0^t \mathscr{R} \partial_t f_2$$

Solution from a uniform initial state

1 natural energy scale $\varepsilon_{\mathscr{C}}(t) = \frac{\hbar c_s}{24\pi R^2 f_2(t)}$ (Instantaneous Casimir energy density)

2 new energy scales: $\varepsilon_{\mathcal{R}} = \frac{\hbar c_s}{48\pi} \mathcal{R}$ $\varepsilon_{\overline{\mathcal{R}}} = \frac{4}{48\pi} \mathcal{R}$

Components of the stress energy tensor

B.Bermond, A.Grushín and, D.Carpentier (2024), ArXív 2402.08610

Metric tensor

$$g_{\mu\nu} = \begin{pmatrix} f_1(t) & 0 \\ 0 & -f_2 \end{pmatrix}$$

$$\frac{\hbar c_s}{48\pi} \overline{\mathscr{R}} = \frac{\hbar c_s}{48\pi} \frac{1}{f_2(t)} \int_0^t \mathscr{R} \partial_t f_2$$

What if the radius R depends on time?

Curved spacetime description

$$\mathrm{d}s^2 = c_s^2 \mathrm{d}t^2 - R(t)^2 \mathrm{d}\theta^2$$

In the absence of gravitational anomalies

Instantaneous Casimir energy density: $\varepsilon_{\mathcal{C}}(t)$ $\varepsilon_{\mathcal{C}}(t) = \frac{\hbar c_s}{24\pi R(t)^2}$

What if the radius R depends on time?

Curved spacetime description

$$\mathrm{d}s^2 = c_s^2 \mathrm{d}t^2 - R(t)^2 \mathrm{d}\theta^2 \longrightarrow$$

In the presence of gravitational anomalies

$$\varepsilon = \frac{\mathscr{C}_{w}}{2} \left(-\varepsilon_{\mathscr{C}}(t) + \varepsilon_{\overline{\mathscr{R}}}\right)$$
$$p = \frac{\mathscr{C}_{w}}{2} \left(-\varepsilon_{\mathscr{C}}(t) + \varepsilon_{\overline{\mathscr{R}}} - 2\varepsilon_{\mathscr{R}}\right)$$
$$J_{\varepsilon}/c_{s} = \Pi c_{s} = \frac{\mathscr{C}_{g}}{2} \left(\varepsilon_{\mathscr{C}}(t) + \varepsilon_{\overline{\mathscr{R}}} - \varepsilon_{\mathscr{R}}\right)$$

2 new energy scales

$$\varepsilon_{\mathcal{R}} = -\frac{\hbar}{24\pi c_s} \frac{\partial_t^2 R}{R} \quad \varepsilon_{\overline{\mathcal{R}}} = -\frac{\hbar}{24\pi c_s} \left(\frac{\partial_t R}{R}\right)$$

Consequences on energy:

Experimentally relevant parameters $R_1 = 40 \mu m$

Typical for Bose-Einstein condensates experiments S.Eckel et. Al. (2021)

Consequences on energy currents for chiral systems:

Experimentally relevant parameters $R_1 = 40 \mu m$ $c_s = 4.10^{-3} m.s^{-1}$

 $R_0 = 10 \mu m$

Typical for Bose-Einstein condensates experiments S. Eckel et. Al. (2021)

Consequences on pressure:

Experimentally relevant parameters $R_1 = 40 \mu m$

 $R_0 = 10 \mu m$ $c_s = 4.10^{-3} \text{m.s}^{-1}$

Typical for Bose-Einstein condensates experiments S.Eckel et. Al. (2021)

Non monotonous pressure

Consequences on pressure:

Experimentally relevant parameters $R_1 = 40 \mu m$

Typical for Bose-Einstein condensates experiments S.Eckel et. Al. (2021)

Consequences on pressure:

Experimentally relevant parameters

 $p(t)/arepsilon_{\mathcal{C}}^{(0)}$ 0.2 0.0 -0.2 $-arepsilon_{\mathcal{C}}(t)/arepsilon_{\mathcal{C}}^{(0)}$ $3 \mathrm{ms}$ -0.4 4ms 5ms -0.6 $6.5 \mathrm{ms}$ -0.8 $10 \mathrm{ms}$ **-** 15ms -1.0 -2 0 t/ au

Consequences on pressure:

An easy way to recover the results?

$$E = 2\pi R(t)\varepsilon = -\mathscr{C}_{w}\frac{\hbar c_{s}}{24R(t)}$$

Together with the thermodynamics identity: $p = \frac{dE}{dR} \equiv \frac{\partial_t E}{\partial_z R}$

$$p = -\mathcal{C}_{w} \frac{\hbar c_{s}}{48\pi R^{2}(t)} \left(1 + \left(\frac{\partial_{t}R}{c_{s}}\right)^{2} + \frac{R\partial_{t}^{2}R}{c_{s}^{2}}\right)$$

 $\frac{1}{t}\left(1+\left(\frac{\partial_t R}{C_s}\right)^2\right)$

3. Gravitational anomalies and the anomalous Casimir effect

3.a. The Casimir effect, or how confinement modify vacuum properties of a system

Curved space time analog

and the anomalous Casimir effect

3.d. Extension to velocity modulated systems

- 3.b. Casimir effect in expanding ring: First predictions and
- 3.c. Another geometric effect: gravitational anomalies and

What if the velocity C_S depends on time?

Curved spacetime description

 ds^2

In the absence of gravitational anomalies

$${}^{2} = \frac{c_{s}(t)}{c_{0}} c_{0}^{2} dt^{2} - \frac{c_{0}}{c_{s}(t)} dx^{2}$$

$$\varepsilon = -\frac{\mathscr{C}_{w}}{2}\varepsilon_{\mathscr{C}}(t)$$

$$p = -\frac{\mathscr{C}_{w}}{2}\varepsilon_{\mathscr{C}}(t)$$

$$J_{\varepsilon}/c_{s} = \Pi c_{s} = -\frac{\mathscr{C}_{g}}{2}\varepsilon_{\mathscr{C}}(t)$$
taneous Casimir energy density: $\varepsilon_{\mathscr{C}}(t)$

$$\varepsilon_{\mathscr{C}}(t) = \frac{\pi\hbar c_{s}(t)}{6L^{2}}$$

What if the velocity C_s depends on time?

in him

 $\varepsilon_{\mathcal{R}} = \frac{\hbar}{48\pi c_s}$

Curved spacetime description

In the presence of gravitational anomalies

$$J_{\varepsilon}/c_{s} = \Pi c_{s} = \frac{-\delta}{2} (\varepsilon_{\mathscr{C}}(t) + \varepsilon_{\overline{\mathscr{R}}} - \varepsilon_{\mathscr{R}})$$

2 new energy scales

$$\frac{1}{c_s} \left[\frac{\partial_t^2 c_s}{c_s} - 2\left(\frac{\partial_t c_s}{c_s}\right)^2 \right] \qquad \varepsilon_{\overline{\mathcal{R}}} = -\frac{\hbar}{96\pi c_s} \left(\frac{\partial_t c_s}{c_s}\right)$$

Consequences on energy:

L = $10\mu m$ Typical for Bose-EinsteinExperimentally relevant parameters $c_s^0 = 8.10^{-4} m.s^{-1}$ Typical for Bose-Einstein $c_s^1 = 7.10^{-3} m.s^{-1}$ s.Eckel et. Al. (2021)

Consequences on pressure:

Experimentally relevant parameters $c_s^0 = 8.10^{-4} \text{m.s}^{-1}$ $c_s^1 = 7.10^{-3} \text{m.s}^{-1}$

 $L = 10 \mu m$

Typical for Bose-Einstein condensates experiments S.Eckel et. Al. (2021)

Consequences on pressure:

Experimentally relevant parameters $c_s^0 = 8.10^{-4} \text{m.s}^{-1}$

 $L = 10 \mu \text{m}$ $c_s^0 = 8.10^{-4} \text{m.s}^{-1}$ $c_s^1 = 7.10^{-3} \text{m.s}^{-1}$

Typical for Bose-Einstein condensates experiments S.Eckel et. Al. (2021)

Consequences on pressure:

Experimentally relevant parameters $c_s^0 = 8.10^{-4} \text{m.s}^{-1}$ $igf p(t) / arepsilon_{\mathcal{C}}^{(0)}$ Signature of the gravitational anomaly $-arepsilon_{\mathcal{C}}(t)/arepsilon_{\mathcal{C}}^{(0)}$ -0.5 $3 \mathrm{ms}$ $4\mathrm{ms}$ -1.0 5ms $6.5 \mathrm{ms}$ $10\mathrm{ms}$ $15\mathrm{ms}$ -1.5 -2 t/ au

Conclusion:

Curved spacetimes arise naturally in condensed matter In this presentation: Curved spacetimes in classical and quantum fluids Curved spacetimes in chiral systems: Quantum Hall edges

Conformal anomalies induce sizable corrections to out-of equilibrium thermodynamics

In this presentation: Within generalized hydrodynamics System driven out-of-equilibium by its geometry Thermodynamic instabilities due to anomalies

Conclusion:

Comparisons to previous work on dynamical Casimir effects?

Dynamical Casimir effect

$\mathscr{R} = 0$

C. Fulling and P. Davies on the relationship between dynamical Casimir effect and anomalies

The relation of that effect, which involves a failure of the usual tracelessness of $\mathcal{T}_{\mu\nu}$ to the present work (dynamical Casimir C. Fulling & P. Davies. (1976) effect) is unclear

