Hybrid Quantum State in 2d Dilaton Gravity

Yohan Potaux, Institut Denis Poisson

June 6th, 2024

Conformal anomalies: theory and applications 2024

Joint work with Debajyoti Sarkar and Sergey Solodukhin Based on 2112.03855, 2212.13208 and 2310.18745

Black hole thermodynamics: a brief recap

- \bullet Bekenstein ('72-73): black holes have an entropy \propto surface area of horizon.
- Hawking ('74-75): black holes emit thermal radiation and eventually evaporate.
- \hookrightarrow Bekenstein-Hawking entropy: $S_{BH} = \frac{A}{4}$.
- "Information paradox": a black hole formed from a pure state ($S_{\rm initial} = 0$) will lead to a steady increase in entropy until its full evaporation ($S_{\rm final} > 0$).

 \hookrightarrow Non-unitary evolution, in disagreement with quantum mechanics.

The Page curve

• Page ('93): if evolution is unitary the entanglement entropy of the radiation will start decreasing around $t_{Page} \simeq \frac{1}{2} t_{evap}$.

 \hookrightarrow Entanglement between outside radiation and the inside of the black hole: $S_{\text{outside}} = S_{\text{inside}}$ so when the black hole shrinks $S \to 0$. \hookrightarrow Which curve is the correct one ? • 't Hooft, Susskind ('93): holographic principle, information contained in a volume of space is encoded on its boundary.

 \hookrightarrow Realized by AdS/CFT correspondence (Maldacena, 1997).

 \hookrightarrow In this context, a CFT on the boundary will evolve unitarily, thus an interior black hole will do too.

 \hookrightarrow Provides an argument in favor of unitary evolution, however it does not explain the exact process.

• A possible explanation is the "island" rule for black hole entropy.

 \hookrightarrow Penington '19, Almheiri et al. '19.

 \hookrightarrow For a nice introduction and review see "The entropy of Hawking radiation", Almheiri et al., '20.

 Hawking's calculation was semi-classical: quantized fields propagate on a classical background spacetime.

• Berthiere, Sarkar, Solodukhin ('17): consider conformally coupled fields propagating on a 4d static spherically symmetric metric.

 \hookrightarrow Quantum effective action determined by the conformal anomaly.

 \hookrightarrow Two important result from this analysis:

i) There is no static solution with an horizon of finite temperature.

ii) The classical horizon is replaced by the throat of a Damour-Solodukhin wormhole (black hole mimicker).

 \hookrightarrow This suggests that the back-reaction of the fields can modify largely the geometry near the horizon.

 \hookrightarrow Complicated to lead a full analysis in 4d.

• Working in 2d will give us more analytical control: curvature has only 1 independent component and every metric is conformally flat:

$$\mathrm{d}S^2 = -e^{2\rho}\mathrm{d}x^+\mathrm{d}x^-\,.\tag{1}$$

• If we consider conformally coupled fields, which contribute via the conformal anomaly to the energy-momentum tensor, the effective action is known (Polyakov, '81)

• However in 2d the Einstein-Hilbert action is topological (Gauss-Bonnet):

$$S_{EH} = \frac{1}{16\pi G} \int_{M} d^{2}x \sqrt{-g} R = \frac{1}{8G} \chi(M)$$
(2)

 \hookrightarrow we need another action.

Alternative actions

• We can either take a function of the curvature:

$$S = \int d^2x \sqrt{-g} f(R), \qquad (3)$$

or introduce a scalar field ϕ (dilaton) and take an action S[$g_{\mu\nu}, \phi$].

Jackiw-Teitelboim gravity:

$$S_{JT} = \int d^2 x \sqrt{-g} \,\phi(R - \Lambda) \,, \tag{4}$$

 → studied in the context of the information paradox (Almheiri et al. '19, Pedraza et al. '19)

• CGHS model (Callan, Giddings, Harvey, Strominger, 1991):

$$S_{CGHS} = \frac{1}{2\pi} \int d^2 x \sqrt{-g} \left\{ e^{-2\phi} \left[R + 4(\nabla \phi)^2 + 4\lambda^2 \right] - \frac{1}{2} \sum_{i=1}^N (\nabla f_i)^2 \right\}, \quad (5)$$

 \hookrightarrow we will focus on this "string inspired" integrable model.

Interpretation of the dilaton ϕ as a radius

• Consider a 4d spherically symmetric metric

$$\tilde{g} = g_{\mu\nu} dx^{\mu} dx^{\nu} + r^2 (x^0, x^1) d\Omega^2 , \quad \mu, \nu = 0, 1.$$
(6)

Plugging this into the Einstein-Hilbert action and setting $r \equiv \frac{1}{\lambda}e^{-\phi}$ gives

$$S_{EH}[\tilde{g}] = \frac{1}{2\pi} \int d^2 x \sqrt{-g} e^{-2\phi} \left[R + 2(\nabla \phi)^2 + 2\lambda^2 e^{2\phi} \right], \tag{7}$$

which is similar to the CGHS action.

 \hookrightarrow One can think of $e^{-\phi}$ as the radius of a transverse sphere.

 Trapped point: the area of the transverse sphere decreases in both null directions:

$$\partial_{\pm}e^{-\phi} < 0 \Leftrightarrow \partial_{\pm}\phi > 0.$$
(8)

 \hookrightarrow Apparent horizon = boundary of a region of trapped points.

Classical eternal black hole

• General static solution of CGHS without matter:

$$\mathrm{d}s^2 = -e^{2\phi}\mathrm{d}x^+\mathrm{d}x^- = \frac{\mathrm{d}x^+\mathrm{d}x^-}{\frac{M}{\lambda} - \lambda^2 x^+ x^-}\,,$$

with M the ADM mass.

 \hookrightarrow Schwarzschild-like geometry.

Classical black hole formation

• Start from Minkowski and send in a shock wave of mass *m* along a null line

 \hookrightarrow From the conformal anomaly and energy conservation one can compute Hawking radiation at \mathcal{I}^+ , radiation is thermal but we have neglected the back-reaction.

 \hookrightarrow We need to include quantum corrections directly into the model.

• Russo, Susskind, Thorlacius (1992): extend the CGHS model by adding the effective Polyakov action:

$$S_{RST} = S_{CGHS} - \frac{\kappa}{2\pi} \int d^2 x \sqrt{-g} \left\{ \frac{1}{2} (\nabla \psi)^2 + (\psi + \phi) R \right\}.$$
 (10)

 $\kappa \sim {
m number \ of \ fields}$

- $\psi = auxiliary scalar field satisfying \Box \psi = R$
- \hookrightarrow different solutions corresponding to different boundary conditions,
- \hookrightarrow we interpret these as different quantum states for the fields,
- \hookrightarrow we define them by fixing the energy density T of the fields at flat infinity,

$$T^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta S_{\text{matter}}}{\delta g_{\mu\nu}} \,. \tag{11}$$

• Hartle-Hawking state: thermal energy density at infinity, energy-momentum tensor regular at the classical horizon.

 \hookrightarrow Well suited to describe Hawking radiation.

• **Boulware** state: energy density vanishes at infinity, however, when considered on the classical black hole metric, the energy-momentum diverges at the horizon.

 \hookrightarrow May describe non-physical particles that should not be detected at infinity (*e.g.* ghosts).

• **Unruh** state: vanishing energy density at past infinity and thermal at future infinity.

 \hookrightarrow Most realistic state to describe a black hole formation and evaporation.

• For an initially static spacetime perturbed by a shock wave at $x^+ = x_0^+$ the solution is given by

$$\mathrm{d}s^2 = -e^{2\phi}\mathrm{d}x^+\mathrm{d}x^-\,,\tag{12}$$

where $\phi(x^+, x^-)$ is determined by the master equation

$$\Omega(\phi) \equiv e^{-2\phi} + \kappa\phi = -\lambda^2 x^+ x^- + 2\kappa P \ln(-\lambda^2 x^+ x^-) + \frac{M}{\lambda} - \frac{m}{\lambda x_0^+} (x^+ - x_0^+) \theta(x^+ - x_0^+),$$
(13)

P = constant linked to asymptotic energy density,

- M = mass initially present,
- m = mass of incoming shock wave (static solution if m = 0)
- \hookrightarrow in the limit $\kappa \to 0$ we recover the classical solution.

Hartle-Hawking solution (P = 0)

• There is always a singularity, even for M = 0, which is spacelike and hidden behind the horizon for large enough κ or M. The shock wave simply displaces it as well as the horizon.

 \hookrightarrow Cannot give Minkowski since it does not contain radiation.

Boulware solution ($P = -\frac{1}{4}$)

• M = 0 gives Minkowski, a shock wave creates an horizon and a singularity.

→ A naked singularity appears at a finite point, can be interpreted as the evaporation point, where the model breaks down.

 → Using the island rule one can derive a Page curve for this solution (Hartman et al. '20).

Boulware with negative κ

• A field in the Boulware state does not radiate at $\infty \rightarrow$ well suited for non-physical particles (*e.g.* ghosts) that contribute negatively to the central charge $\kappa \rightarrow$ consider the Boulware solution with $\kappa < 0$.

 \hookrightarrow no singularity, geodesically complete, but no radiation.

 We assume that 2 types of fields are present, physical and non-physical, and that they are in 2 different quantum states, Hartle-Hawking and Boulware respectively.

 \hookrightarrow 2 auxiliary fields ψ_1 and ψ_2 with suitable boundary conditions and associated to 2 central charges $\kappa_1 > 0$ and $\kappa_2 < 0$.

 \hookrightarrow this yields

$$e^{-2\phi} + \kappa\phi = -\lambda^2 x^+ x^- - \frac{\kappa_2}{2} \ln(-\lambda^2 x^+ x^-) + \frac{M}{\lambda} - \frac{m}{\lambda x_0^+} (x^+ - x_0^+)\theta(x^+ - x_0^+), \quad (14)$$

where $\kappa = \kappa_1 + \kappa_2$.

. κ < 0: spacetime is geodesically complete and fully regular, with an horizon and radiation.

Hybrid Hartle-Hawking/Boulware solution

. Representing the energy fluxes at ∞ we get:

 \hookrightarrow Deviation from thermality at \mathcal{I}^+ .

 \hookrightarrow We can get rid of radiation at \mathcal{I}^- by using the Unruh state.

• We can modify the boundary conditions of field ψ_1 to only get radiation at \mathcal{I}^+ . This allows us to define the Unruh state for physical particles.

• We can then consider the hybrid state where physical particles are in the Unruh state and non-physical ones in the Boulware state:

$$e^{-2\phi} + \kappa\phi = -\lambda^2 x^+ x^- - \frac{\kappa_2}{2} \ln(-\lambda^2 x^+ x^-) - \frac{\kappa_1}{2} \ln(\lambda x^+) + \frac{M}{\lambda} - \frac{m}{\lambda x_0^+} (x^+ - x_0^+) \theta(x^+ - x_0^+),$$
(15)

 $\hookrightarrow \psi_1$ satisfies Boulware-type conditions at \mathcal{I}^- and Hartle-Hawking-type at \mathcal{I}^+ .

 \hookrightarrow Same spacetime structure but without radiation at \mathcal{I}^- .

Hybrid Unruh/Boulware solution

 \hookrightarrow Formation of an apparent horizon, but note that it does not capture the evaporation process as the horizon is eternal.

 \hookrightarrow Radiation is not thermal at \mathcal{I}^+ , let us study the evolution of its entropy.

Entropy of radiation

 ${\scriptstyle ullet}$ Define the radiation entropy at ${\cal I}^+$ by

$$\partial_{-}S = \frac{2\pi}{\lambda}T_{--} \tag{16}$$

 $(dS = T^{-1}dE$ in asymptotically flat coordinates). \hookrightarrow This entropy has a maximum at $x^{-} = x_{m}^{-} \equiv \left(1 - \sqrt{\frac{\kappa}{\kappa_{2}}}\right)^{-1} x_{h}^{-}$ and can be shown to follow a Page curve behavior:

Conclusion and possible continuations

• The back-reaction of particles on the spacetime indeed modifies the geometry.

• The hybrid state solution where non-physical particles dominate ($\kappa < 0$) turns out to be the most interesting one: the singularity disappears and we are left with a geodesically complete causal diamond, and we can derive a Page curve for the radiation entropy.

• However the picture does not seem complete since the horizon does not disappear.

• A possible continuation would be to make the connection with the island procedure by applying it to our hybrid solution.

• Many open questions remain, such as considering massive and/or interacting fields, can this be reproduced in higher dimensions, etc.

Thank you!