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Black hole thermodynamics: a brief recap

. Bekenstein ('72-73): black holes have an entropy o surface area of horizon.
. Hawking ('74-75): black holes emit thermal radiation and eventually
evaporate.

< Bekenstein-Hawking entropy: Sgy = 4.

. "Information paradox”: a black hole formed from a pure state (Sinitial = 0)

will lead to a steady increase in entropy until its full evaporation (Sguar > 0).
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— Non-unitary evolution, in disagreement with quantum mechanics.



The Page curve

. Page ('93): if evolution is unitary the entanglement entropy of the radiation

will start decreasing around tpage = %tevapl

S rad

A

' >~

tPage tevap

— Entanglement between outside radiation and the inside of the black hole:
Soutside = Sinside S0 When the black hole shrinks S — 0.

— Which curve is the correct one ?



A possible way towards the resolution

. 't Hooft, Susskind ('93): holographic principle, information contained in a
volume of space is encoded on its boundary.

< Realized by AdS/CFT correspondence (Maldacena, 1997).

— In this context, a CFT on the boundary will evolve unitarily, thus an interior
black hole will do too.

— Provides an argument in favor of unitary evolution, however it does not
explain the exact process.

. A possible explanation is the "island” rule for black hole entropy.

— Penington 19, Almheiri et al. "19.

— For a nice introduction and review see "The entropy of Hawking radiation”,
Almheiri et al.,, '20.



A semi-classical approach

. Hawking's calculation was semi-classical: quantized fields propagate on a
classical background spacetime.

. Berthiere, Sarkar, Solodukhin ("17): consider conformally coupled fields
propagating on a 4d static spherically symmetric metric.

— Quantum effective action determined by the conformal anomaly.

— Two important result from this analysis:

i) There is no static solution with an horizon of finite temperature.

ii) The classical horizon is replaced by the throat of a Damour-Solodukhin
wormhole (black hole mimicker).

— This suggests that the back-reaction of the fields can modify largely the
geometry near the horizon.

— Complicated to lead a full analysis in 4d.



Two-dimensional semi-classical gravity

. Working in 2d will give us more analytical control: curvature has only 1

independent component and every metric is conformally flat:
ds? = —e*dxtdx~ . ()

. If we consider conformally coupled fields, which contribute via the
conformal anomaly to the energy-momentum tensor, the effective action is
known (Polyakov, '81)

. However in 2d the Einstein-Hilbert action is topological (Gauss-Bonnet):

Ser = 155 | PXV=IR = gex(M) @)

< we need another action.



Alternative actions

. We can either take a function of the curvature:

s— [ @xv=gfiR).
or introduce a scalar field ¢ (dilaton) and take an action S[g,..., ¢].

. Jackiw-Teitelboim gravity:

Sr= [ Pxy=goR-A),
— studied in the context of the information paradox (Almheiri et al. "9,
Pedraza et al. '19)

. CGHS model (Callan, Giddings, Harvey, Strominger, 1991):
N

SceHs = %/dzx\/—ig {e_2¢ [R +4(Ve)® + 4)\2} _ % Z(vﬁ)z} 7
=

— we will focus on this "string inspired” integrable model.



Interpretation of the dilaton ¢ as a radius

. Consider a 4d spherically symmetric metric
J = gudx*dx” + r*(x°,x")dQ?*, u,v=0,1. (6)
Plugging this into the Einstein-Hilbert action and setting r = ye~¢ gives

Sen[g] = / d’x\/=ge™??|R +2(V¢)? +2A2e2ﬂ , )

which is similar to the CGHS action.
— One can think of e=? as the radius of a transverse sphere.
. Trapped point: the area of the transverse sphere decreases in both null
directions:
die <0< 8.¢0>0. €))

— Apparent horizon = boundary of a region of trapped points.



Classical eternal black hole

. General static solution of CGHS without matter:
dxtdx—
d52 _ _eZ¢dX+dX— = dx ,
3 — AXXtx
with M the ADM mass.

- - —Horizon

— Schwarzschild-like geometry.

Singularity



Classical black hole formation

. Start from Minkowski and send in a shock wave of mass m along a null line
Xt = X0+I ***** Horizon
Singularity
——Incoming matter

— From the conformal anomaly and energy conservation one can compute
Hawking radiation at ZT, radiation is thermal but we have neglected the

back-reaction.

— We need to include quantum corrections directly into the model. -



The semi-classical RST model

. Russo, Susskind, Thorlacius (1992): extend the CGHS model by adding the

effective Polyakov action:

Srst = SceHs — ;/dZXN{;(Vw)2+(¢+¢)R}~ (10)

k ~ number of fields

1 = auxiliary scalar field satisfying Oy = R

— different solutions corresponding to different boundary conditions,
— we interpret these as different quantum states for the fields,

— we define them by fixing the energy density T of the fields at flat infinity,

2 5smatter

™ = —matter
\% —g 59#1/

(1)
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Quantum states

. Hartle-Hawking state: thermal energy density at infinity, energy-momentum
tensor regular at the classical horizon.

— Well suited to describe Hawking radiation.

. Boulware state: energy density vanishes at infinity, however, when
considered on the classical black hole metric, the energy-momentum
diverges at the horizon.

— May describe non-physical particles that should not be detected at
infinity (e.g. ghosts).

. Unruh state: vanishing energy density at past infinity and thermal at future
infinity.

— Most realistic state to describe a black hole formation and evaporation.



A general solution

. For an initially static spacetime perturbed by a shock wave at x* = x§ the
solution is given by
ds? = —e*®dxTdx, (12)

where ¢(x™,x™) is determined by the master equation

Q(¢) = e +rp = 7A2x+x*+2nP|n(7A2x+x*)+%—A%(xtxg)o(xtxg),
: (13)

P = constant linked to asymptotic energy density,

M = mass initially present,

m = mass of incoming shock wave (static solution if m = 0)

< in the limit K — 0 we recover the classical solution.



Hartle-Hawking solution (P = 0)

. There is always a singularity, even for M = 0, which is spacelike and hidden
behind the horizon for large enough s or M. The shock wave simply displaces

it as well as the horizon.

- - - - Horizon

Singularity
—>—Shock wave
2t

— Cannot give Minkowski since it does not contain radiation. 1



Boulware solution (P = —1)

. M = 0 gives Minkowski, a shock wave creates an horizon and a singularity.

----Horizon
—>Singularity
——Shock Wave

— A naked singularity appears at a finite point, can be interpreted as the
evaporation point, where the model breaks down.

— Using the island rule one can derive a Page curve for this solution
(Hartman et al. '20).
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Boulware with negative «

. A field in the Boulware state does not radiate at co — well suited for
non-physical particles (e.g. ghosts) that contribute negatively to the central

charge x — consider the Boulware solution with x < 0.

----Horizon
——Shock Wave

— no singularity, geodesically complete, but no radiation.
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Hybrid quantum state

. We assume that 2 types of fields are present, physical and non-physical,
and that they are in 2 different quantum states, Hartle-Hawking and
Boulware respectively.

— 2 auxiliary fields 7 and 1, with suitable boundary conditions and
associated to 2 central charges x; > 0 and &, < 0.

— this yields

_ _ k2 _ M m
e % 4+ kp = —Nxtx —7In(—)\2x+x )+X—E(x+—xg)9(x+—xg), (14)

where k = k1 + Ky.
. k < 0: spacetime is geodesically complete and fully regular, with an horizon

and radiation.



Hybrid Hartle-Hawking/Boulware solution

. Representing the energy fluxes at co we get:

----Horizon

——Shock Wave /

— Deviation from thermality at Z+.

— We can get rid of radiation at Z— by using the Unruh state.



Hybrid Unruh/Boulware state

- We can modify the boundary conditions of field v to only get radiation at

Z". This allows us to define the Unruh state for physical particles.

. We can then consider the hybrid state where physical particles are in the

Unruh state and non-physical ones in the Boulware state:

e~ trp = — AT x — 2 In(=X\xtxT)- 2 In(Ax+)+M—ﬂ(x*—x*)ﬂ(x*—ﬁ)

2 2 A oG 0 07

(15)

— 1y satisfies Boulware-type conditions at Z— and Hartle-Hawking-type at

It

— Same spacetime structure but without radiation at Z~.
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Hybrid Unruh/Boulware solution

----Horizon

——Shock Wave / ’

— Formation of an apparent horizon, but note that it does not capture the
evaporation process as the horizon is eternal.

— Radiation is not thermal at ZT, let us study the evolution of its entropy.
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Entropy of radiation

. Define the radiation entropy at Z* by

27
0_S = TT,, (16)

(dS = T'dE in asymptotically flat coordinates).
— This entropy has a maximum at x~ = x,, = (1 -, /%)

shown to follow a Page curve behavior:

1
x, and can be

S(z™)
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Conclusion and possible continuations

. The back-reaction of particles on the spacetime indeed modifies the
geometry.

. The hybrid state solution where non-physical particles dominate (x < 0)
turns out to be the most interesting one: the singularity disappears and we
are left with a geodesically complete causal diamond, and we can derive a
Page curve for the radiation entropy.

. However the picture does not seem complete since the horizon does not
disappear.

. A possible continuation would be to make the connection with the island
procedure by applying it to our hybrid solution.

. Many open questions remain, such as considering massive and/or

interacting fields, can this be reproduced in higher dimensions, etc.
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Thank you!



