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Black hole thermodynamics: a brief recap

• Bekenstein (’72-73): black holes have an entropy ∝ surface area of horizon.

• Hawking (’74-75): black holes emit thermal radiation and eventually

evaporate.

↪→ Bekenstein-Hawking entropy: SBH = A
4 .

• ”Information paradox”: a black hole formed from a pure state (Sinitial = 0)

will lead to a steady increase in entropy until its full evaporation (Sfinal > 0).

↪→ Non-unitary evolution, in disagreement with quantum mechanics. 2



The Page curve

• Page (’93): if evolution is unitary the entanglement entropy of the radiation

will start decreasing around tPage ≃ 1
2 tevap.

↪→ Entanglement between outside radiation and the inside of the black hole:

Soutside = Sinside so when the black hole shrinks S→ 0.

↪→ Which curve is the correct one ? 3



A possible way towards the resolution

• ’t Hooft, Susskind (’93): holographic principle, information contained in a

volume of space is encoded on its boundary.

↪→ Realized by AdS/CFT correspondence (Maldacena, 1997).

↪→ In this context, a CFT on the boundary will evolve unitarily, thus an interior

black hole will do too.

↪→ Provides an argument in favor of unitary evolution, however it does not

explain the exact process.

• A possible explanation is the ”island” rule for black hole entropy.

↪→ Penington ’19, Almheiri et al. ’19.

↪→ For a nice introduction and review see ”The entropy of Hawking radiation”,

Almheiri et al., ’20.
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A semi-classical approach

• Hawking’s calculation was semi-classical: quantized fields propagate on a

classical background spacetime.

• Berthiere, Sarkar, Solodukhin (’17): consider conformally coupled fields

propagating on a 4d static spherically symmetric metric.

↪→ Quantum effective action determined by the conformal anomaly.

↪→ Two important result from this analysis:

i) There is no static solution with an horizon of finite temperature.

ii) The classical horizon is replaced by the throat of a Damour-Solodukhin

wormhole (black hole mimicker).

↪→ This suggests that the back-reaction of the fields can modify largely the

geometry near the horizon.

↪→ Complicated to lead a full analysis in 4d.
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Two-dimensional semi-classical gravity

• Working in 2d will give us more analytical control: curvature has only 1

independent component and every metric is conformally flat:

ds2 = −e2ρdx+dx− . (1)

• If we consider conformally coupled fields, which contribute via the

conformal anomaly to the energy-momentum tensor, the effective action is

known (Polyakov, ’81)

• However in 2d the Einstein-Hilbert action is topological (Gauss-Bonnet):

SEH =
1

16πG

∫
M

d2x
√
−gR =

1
8Gχ(M) (2)

↪→ we need another action.
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Alternative actions

• We can either take a function of the curvature:

S =

∫
d2x

√
−g f(R) , (3)

or introduce a scalar field φ (dilaton) and take an action S[gµν , φ].

• Jackiw-Teitelboim gravity:

SJT =
∫

d2x
√
−gφ(R− Λ) , (4)

↪→ studied in the context of the information paradox (Almheiri et al. ’19,

Pedraza et al. ’19)

• CGHS model (Callan, Giddings, Harvey, Strominger, 1991):

SCGHS =
1
2π

∫
d2x

√
−g

{
e−2ϕ

[
R+ 4(∇φ)2 + 4λ2

]
− 1
2

N∑
i=1

(∇fi)2
}
, (5)

↪→ we will focus on this ”string inspired” integrable model.
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Interpretation of the dilaton ϕ as a radius

• Consider a 4d spherically symmetric metric

g̃ = gµνdxµdxν + r2(x0, x1)dΩ2 , µ, ν = 0, 1 . (6)

Plugging this into the Einstein-Hilbert action and setting r ≡ 1
λe

−ϕ gives

SEH[g̃] =
1
2π

∫
d2x

√
−g e−2ϕ

[
R+ 2(∇φ)2 + 2λ2e2ϕ

]
, (7)

which is similar to the CGHS action.

↪→ One can think of e−ϕ as the radius of a transverse sphere.

• Trapped point: the area of the transverse sphere decreases in both null

directions:

∂±e−ϕ < 0⇔ ∂±φ > 0 . (8)

↪→ Apparent horizon = boundary of a region of trapped points.
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Classical eternal black hole

• General static solution of CGHS without matter:

ds2 = −e2ϕdx+dx− =
dx+dx−

M
λ − λ2x+x−

, (9)

with M the ADM mass.

↪→ Schwarzschild-like geometry.
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Classical black hole formation

• Start from Minkowski and send in a shock wave of mass m along a null line

x+ = x+0 :

↪→ From the conformal anomaly and energy conservation one can compute

Hawking radiation at I+, radiation is thermal but we have neglected the

back-reaction.

↪→ We need to include quantum corrections directly into the model. 10



The semi-classical RST model

• Russo, Susskind, Thorlacius (1992): extend the CGHS model by adding the

effective Polyakov action:

SRST = SCGHS −
κ

2π

∫
d2x

√
−g

{
1
2 (∇ψ)

2 + (ψ + φ)R
}
. (10)

κ ∼ number of fields

ψ = auxiliary scalar field satisfying □ψ = R

↪→ different solutions corresponding to different boundary conditions,

↪→ we interpret these as different quantum states for the fields,

↪→ we define them by fixing the energy density T of the fields at flat infinity,

Tµν =
2√
−g

δSmatter
δgµν

. (11)
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Quantum states

• Hartle-Hawking state: thermal energy density at infinity, energy-momentum
tensor regular at the classical horizon.

↪→ Well suited to describe Hawking radiation.

• Boulware state: energy density vanishes at infinity, however, when
considered on the classical black hole metric, the energy-momentum

diverges at the horizon.

↪→ May describe non-physical particles that should not be detected at

infinity (e.g. ghosts).

• Unruh state: vanishing energy density at past infinity and thermal at future
infinity.

↪→ Most realistic state to describe a black hole formation and evaporation.
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A general solution

• For an initially static spacetime perturbed by a shock wave at x+ = x+0 the

solution is given by

ds2 = −e2ϕdx+dx− , (12)

where φ(x+, x−) is determined by the master equation

Ω(φ) ≡ e−2ϕ+κφ = −λ2x+x−+2κP ln(−λ2x+x−)+M
λ
− m
λx+0

(x+−x+0 )θ(x
+−x+0 ) ,

(13)

P = constant linked to asymptotic energy density,

M = mass initially present,

m = mass of incoming shock wave (static solution if m = 0)

↪→ in the limit κ→ 0 we recover the classical solution.
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Hartle-Hawking solution (P = 0)

• There is always a singularity, even for M = 0, which is spacelike and hidden

behind the horizon for large enough κ or M. The shock wave simply displaces

it as well as the horizon.

↪→ Cannot give Minkowski since it does not contain radiation. 14



Boulware solution (P = − 1
4 )

• M = 0 gives Minkowski, a shock wave creates an horizon and a singularity.

↪→ A naked singularity appears at a finite point, can be interpreted as the

evaporation point, where the model breaks down.

↪→ Using the island rule one can derive a Page curve for this solution

(Hartman et al. ’20). 15



Boulware with negative κ

• A field in the Boulware state does not radiate at∞ → well suited for

non-physical particles (e.g. ghosts) that contribute negatively to the central

charge κ→ consider the Boulware solution with κ < 0.

↪→ no singularity, geodesically complete, but no radiation. 16



Hybrid quantum state

• We assume that 2 types of fields are present, physical and non-physical,

and that they are in 2 different quantum states, Hartle-Hawking and

Boulware respectively.

↪→ 2 auxiliary fields ψ1 and ψ2 with suitable boundary conditions and

associated to 2 central charges κ1 > 0 and κ2 < 0.

↪→ this yields

e−2ϕ + κφ = −λ2x+x− − κ2
2 ln(−λ2x+x−)+ M

λ
− m
λx+0

(x+ − x+0 )θ(x
+ − x+0 ) , (14)

where κ = κ1 + κ2.

• κ < 0: spacetime is geodesically complete and fully regular, with an horizon

and radiation.

17



Hybrid Hartle-Hawking/Boulware solution

• Representing the energy fluxes at∞ we get:

↪→ Deviation from thermality at I+.

↪→ We can get rid of radiation at I− by using the Unruh state.
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Hybrid Unruh/Boulware state

• We can modify the boundary conditions of field ψ1 to only get radiation at

I+. This allows us to define the Unruh state for physical particles.

• We can then consider the hybrid state where physical particles are in the

Unruh state and non-physical ones in the Boulware state:

e−2ϕ+κφ = −λ2x+x−−κ22 ln(−λ2x+x−)−κ12 ln(λx+)+M
λ
− m
λx+0

(x+−x+0 )θ(x
+−x+0 ) ,

(15)

↪→ ψ1 satisfies Boulware-type conditions at I− and Hartle-Hawking-type at

I+.

↪→ Same spacetime structure but without radiation at I−.
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Hybrid Unruh/Boulware solution

↪→ Formation of an apparent horizon, but note that it does not capture the

evaporation process as the horizon is eternal.

↪→ Radiation is not thermal at I+, let us study the evolution of its entropy.
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Entropy of radiation

• Define the radiation entropy at I+ by

∂−S =
2π
λ
T−− (16)

(dS = T−1dE in asymptotically flat coordinates).

↪→ This entropy has a maximum at x− = x−m ≡
(
1−

√
κ
κ2

)−1
x−h and can be

shown to follow a Page curve behavior:
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Conclusion and possible continuations

• The back-reaction of particles on the spacetime indeed modifies the

geometry.

• The hybrid state solution where non-physical particles dominate (κ < 0)

turns out to be the most interesting one: the singularity disappears and we

are left with a geodesically complete causal diamond, and we can derive a

Page curve for the radiation entropy.

• However the picture does not seem complete since the horizon does not

disappear.

• A possible continuation would be to make the connection with the island

procedure by applying it to our hybrid solution.

• Many open questions remain, such as considering massive and/or

interacting fields, can this be reproduced in higher dimensions, etc.
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Thank you!


