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Plan

I Discuss the differences between scale and conformal invariance

I Study which properties of conformal invariance may generalize
to full scale invariance

I Find in-between “symmetries”
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Conformal vs scale anomaly
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Classical Weyl symmetry

Local Weyl rescalings by σ = σ(x)

gµν → g ′µν = e2σgµν Φ→ Φ′ = ewΦσΦ

The energy-momentum tensor

Tµν = − 2
√
g

δS

δgµν

Nöther identities of Diff and Weyl symmetries on-shell

∇µTµν = 0 Tµ
µ = 0
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Quantum Weyl symmetry

From the path-integral

e−Γ =

∫
[dΦ] e−S

The renormalized EMT

〈Tµν〉 = − 2
√
g

δΓ

δgµν

Conformal anomaly coming from the path-integral on-shell

〈Tµ
µ〉 = beta terms + anomaly
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Scale vs conformal symmetry

For a rigid scale transformation σ = const.∫
ddx
√
gTµ

µ = 0

Implies the existence of a “virial” current Dµ

Tµ
µ = ∇µDµ

The current must not have anomalous dimension, but I believe

〈Tµ
µ −∇µDµ〉 = beta terms + anomaly
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Why is this interesting?

Second order phase transitions imply diverging correlation length

ξ ∼ t
1
ν e.g. t = (T − Tc)/Tc

ξ →∞ implies scale invariance not conformal invariance in general.
However, we do study conformally invariant systems most of the times. Our bias?
Old argument: operator [Dµ] acquires an anomalous dimension, say

(d − 1) + γD

So [T ] ∼ [∂ · D] cannot work in general unless γD = 0.

But, we do have physically interesting examples of scale-but-not-conformal models:

I Elastic membranes (i.e., interacting versions of Cardy-Riva counter-example)

I Aharony-Fisher dipolar ferromagnets
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A source for Dµ: gauging the Weyl group

Introduce an Abelian gauge potential

gµν → g ′µν = e2σgµν Sµ → S ′µ = Sµ − ∂µσ Φ→ Φ′ = ewΦσΦ

The unique gauged covariant compatible derivative

∇̂µΦ = ∇µΦ + Lµ · Φ + wΦSµΦ

It contains “disformation” because dilatations do not commute with Poincaré

(Lµ)αβ =
1

2
(Sβδ

α
µ + Sµδ

α
β − Sαgβµ)

By construction it transforms covariantly under Weyl: ∇̂µΦ→ ∇̂′µΦ′ = ewΦσ∇̂µΦ
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Consequences of gauging Weyl

There is a new dilation current

Tµν = − 2
√
g

δS

δgµν
Dµ =

1
√
g

δS

δSµ

Classically gauged Weyl and Diff symmetries with W = dS imply

Tµ
µ = ∇µDµ ∇̂µTµν + DµW

µν = 0

In the limit Sµ → 0 we have scale invariance and Dµ is virial

Tµ
µ = ∇µDµ ∇µTµν = 0
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Local RG analysis of the anomaly
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Renormalization with local couplings

Use local couplings to source observables

S ⊃ −
∫

ddx
√
gλi (x)Oi

Currents source the expectation values

〈Tµν〉 = − 2
√
g

δΓ

δgµν
〈Dµ〉 =

1
√
g

δΓ

δSµ
〈Oi 〉 = − 1

√
g

δΓ

δλi

We expect the path-integral to give the anomaly

〈Tµ
µ〉 = 〈∇µDµ〉+ beta terms + curvatures
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Local rg interpretation

Local scale transformation on the geometrical sources

∆W
σ =

∫ {
2σgµν

δ

δgµν
− ∂µσ

δ

δSµ

}

Local scale transformation caused by the rg beta functions

∆β
σ = −

∫
σβi

δ

δλi

The anomaly of Γ is expressed

∆W
σ Γ = ∆β

σΓ + Aσ Aσ ⊃ {∂µλi ,R, Sµ,Wµν · · · }
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Wess-Zumino consistency

Rewrite

∆σΓ = (∆W
σ −∆β

σ)Γ = Aσ

For Wess-Zumino’s consistency and Abelian transf.

[∆σ,∆σ′ ]Γ = 0

Consistency condition for the anomaly

(∆W
σ −∆β

σ)Aσ′ − (σ ↔ σ′) = 0
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The anomaly in two dimensions

Most general parametrization of Aσ using R̂ = R − 2∇µSµ

Aσ =
1

2π

∫
d2x
√
g
{
σ
βΦ

2
R̂ − σ

χij

2
∂µλ

i∂µλj − ∂µσwi∂
µλi

+ σβΨ∇µSµ + σ
βS2
2
SµS

µ − ∂µσβS3 Sµ + σzi∂µλ
iSµ
}

Rich structure of anomaly terms =⇒ cohomological analysis

I δσR̂ = −2σR̂ is a b-type anomaly

I δσ∇µSµ = −∇2σ is a mixed anomaly (a-type + boundary)

Geometry in couplings space

I χij is a metric, χij ∼ 〈OiOj〉
I Four scalar “charges” βΦ, βΨ, βS2 and βS3
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Consistency in two dimensions

The tensors in the anomaly are all observables thorough 2-point functions
that we want to constrain using Wess-Zumino’s identities.

Apply Wess-Zumino’s

[∆σ,∆σ′ ]Γ =
1

2π

∫
d2x
√
g
(
σ∂µσ

′ − σ′∂µσ
)
Zµ = 0

Condition Zµ = ∂µλ
iYi + SµX = 0 among tensors becomes (here ∂i = ∂/∂gi )

Yi = −∂iβΨ + χijβ
j − βj∂jwi − w j∂iβj + zi

X = βS2 − βi∂iβS3 − ziβ
i
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A hint of (ir)reversibility and potential gradient-like structure

Define a new charge

β̃Ψ = βΨ + wiβ
i + βS3

Using Θ = βiOi and defining Θ′ = Θ− ∂µDµ, the observable

〈T (x)T (0)〉 − 〈Θ′(x)Θ′(0)〉 ∼ β̃Ψ∂
2δ(2)(x)

alternatively T = T − ∂ · D

〈T (x)T (0)〉 − 〈Θ(x)Θ(0)〉 ∼ β̃Ψ∂
2δ(2)(x)

Using both Yi = 0 and Z = 0

µ
d

dµ
β̃Ψ = βi∂i β̃Ψ = χijβ

iβj + βS2
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Conditions for C -like theorems

In the limit in which Dµ = 0, i.e., Sµ is decoupled

βΦ = βΨ βS2 = 0

Requiring unitarity we have Zamolodchikov’s metric Gij = 1
8 |x |

4 〈Oi (x)Oj(0)〉 > 0.

Osborn proves that there is a scheme in which χij → Gij and β̃Ψ ∼ C

However unitarity + Poincaré = conformal i.e. no Dµ if unitary
Are there less stringent conditions for βi∂i β̃Ψ ≥ 0 suitable for scale invariance?
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Gradient-like flow and βS
2 obstruction

Assume by contradiction A(g) function such that

βi = γ ij∂jA

By construction

µ
d

dµ
A = βi∂iA = γijβ

iβj

Suggests through the identification β̃Ψ that A function exists iff βS2 = 0

χij ↔ γ(ij) A↔ β̃Ψ

18/32



Simple applications
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Higher derivative scalar

Higher derivative free scalar is a (log)CFT in flat space in d = 2

L =
1

2
(∂2ϕ)2

Notice that 〈ϕ(x)ϕ(0)〉 ∼ |x |2 for ϕ primary, in contrast with (∂2
x )2〈ϕ(x)ϕ(0)〉 ∼ δ(x)

Does not admit a conformal action in d = 2 because of the obstruction

Sconf [ϕ, g ] = −1

2

∫
d2x
√
gϕ∆4ϕ

∆4ϕ = (∇2)2ϕ+ 2∇µ
(
Pµν∇νϕ+ · · ·

)
− (d − 4)

(
PµνPµν + · · ·

)
ϕ

Pµν =
1

d − 2

{
Rµν −

1

2(d − 1)
Rgµν

}
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Gauging the higher derivative scalar

Assign the weight w(ϕ) = 4−d
2 → 1

S [ϕ, gµν , Sµ] = −1

2

∫
d2x
√
gϕ(∇̂2)2ϕ

Does admit a gauged action in d = 2

(∇̂2)2ϕ = (∇2)2ϕ+ Bµν∇µ∂νϕ+ Cµ∂νϕ+ Dϕ

Bµν = 2gµνS
ρSρ − 4SµSν + 4∇(µSν)

Using heat kernel methods (Barvinsky-Wachowski) βS2 = 0, βΦ = 1
3 and βΨ = 4

3

Aσ =
1

2π

∫
d2x
√
gσ
{R

6
+∇µSµ

}
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Another application: theory of elasticity

Elastic 2d membrane with strain uµν = ∂(µuν) considered by Cardy-Riva

S [u] =
1

2

∫
d2x
{

2 g uµνu
µν + k uµ

µuν
ν
}

Gauging uµν → ∇̂(µuν) we find

Aσ =
1

2π

∫
d2x
√
g
{ 13g + 5k

6(2g + k)
R − 3g + k

2g + k
∇µSµ −

(3g + k)2

4g(2g + k)
SµS

µ
}

+ · · ·

Charges βΦ = βΨ = 2
3 and βS2 = 0 in the global conformal limit 3g + k = 0, in general:

βΦ =
5

3
+

g

(2g + k)
, βΨ =

2

3
, βS2 = − (3g + k)2

4g(2g + k)
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Further and future developments
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Analysis with the fundamental field

Gimenez-Grau + Nakayama + Rychkov: in actual models with a field ϕµ, the virial
current must be protected by some hidden symmetry.

They find in all examples of scale-but-not conformal models a shift-symmetry with
respect to some field U (Abelian + commuting with Poincaré)
=⇒ new quantum number to multiplets, including [ϕµ]

The vector Uϕµ has scaling dimension d − 1, there is a candidate virial current

Dµ ∼ Uϕµ + · · ·

Can we see this as emerging from the local rg analysis? Need fundamental fields
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Four dimensions

The analysis of the d = 4 anomaly with gauged-Weyl transformations is ongoing.
It may have implications for Weyl-invariant higher derivative quantum gravity.

Gregorio Paci (in the audience) has just completed the cohomological analysis of the
anomaly with constant couplings.

The potential Sµ can be interpreted as the torsion vector in metric-affine geometries as
discussed with Dario Sauro (also in the audience).

25/32



Somewhere between scale and conformal invariance:
the restricted Weyl group
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Grupoids

It is possible to define group-like substructures of Weyl

gµν → g ′µν = Ω2gµν for Hg (Ω) = 2gΩ +
d − 4

2Ω
gµν∂µΩ∂νΩ = 0

They are partial but associative, i.e.

Hg (Ω1) = 0 and H(Ω1)2g (Ω2) = 0 =⇒ Hg (Ω2Ω1) = 0

The above is the harmonic/restricted Weyl “subgroup” unique such that

√
gR →

√
g ′R ′ =

√
gR

We have shown the uniqueness of some substructures under certain assumptions.
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Nöther identities

Classically, they imply that there is a scalar Φ such that

Tµ
µ = 2gΦ

Quantum mechanically

〈Tµ
µ〉 = 2g 〈Φ〉+A+

(
β terms

)
For example, a nonminimally coupled scalar field in d = 4

(4π)2A =
1

120
W 2
αβµν −

1

360
E4 +

1

2

(
ξ − 1

6

)2
R2

(4π)2〈Φ〉 =
(
ξ − 1

6

)(
3ϕ2 − R

6

)
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Application: higher derivative gravity

Take conformal gravity: Swg = 1
2λ

∫
W 2 and partially gauge fix Weyl symmetry with

1

2α

∫ √
gR2

There is a BRST

δBgµν = 2cgµν δBc = −2cc + b δBc = 0 δBb = −2cb

The gauge fixed action has residual harmonic invariance

S = Swg + Sgf + Sgh =

∫
d4x
√
g
{ 1

2λ
W 2 +

1

2α
R2
}

+ 6

∫
d4x
√
gc2gc
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Asymptotic freedom in conformal vs higher derivative gravity

Conformal gravity is asymptotically free but anomalous at 2-loops

βλ = − 1

(4π)2

199

15
λ2

Higher derivative gravity is also free but requires a tachyon

βλ = − 1

(4π)2

133

10
λ2

They differ precisely by the contribution of two scalars (i.e., the ghosts).

=⇒ relation with the a-gravity proposal for the UV-completion of GR
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Conclusions

I Largely unexplored field discussing the anomaly and the boundary between scale
and conformal invariance

I Potentially interesting applications in both statistical mechanical models and
quantum gravity
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Thank you for listening
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Extras on the integration of the anomaly and ambiguities
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In two dimensions

For zero beta functions β = 0 the anomaly is

〈Tµ
µ〉 = aR

We want to integrate the anomaly, take gµν = e2σḡµν
√
gR =

√
ḡ(R̄ − 2∇̄2σ)

Using δ
δσΓ ∼ 〈T 〉, find Γind ⊂ Γ

Γind = a

∫
d2x
√
g
(
σR + σ∇2σ

)
On-shell in σ we get Polyakov’s

Γind =
a

4

∫
d2x
√
gR

1

−∇2
R
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In four dimensions

The anomaly is
〈Tµ

µ〉 = bW 2 + aẼ4 + a′2R

Having defined

Ẽ4 = E4 −
2

3
�R = E4 +∇α

(
−2

3
∇αR

)

The transformations

√
gẼ4 =

√
ḡ
(

˜̄E4 + 4∆̄4σ
) √

gW 2 =
√
ḡ W̄ 2

√
g�R = −1

4

δ

δσ

∫
d4x
√
gRµνRµν
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Four dimensional anomaly

We can integrate each term separately

Γ = Γconf [g ] +
a′1
12

∫
d4x
√
g R2 +

∫
d4x
√
g
(
b1W

2 + a1Ẽ4

) 1

∆4
Ẽ4

Applications

I Quantum field theory −→ C - and A-theorems

I Black holes −→ corrections to BH entropy

I Cosmology −→ expanding universe
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In general even d

The anomaly is conjectured (Cardy)

〈Tµ
µ〉 =

∑
i

biWi + aẼd +∇µJ µ

Such that
Ẽd = Ed +∇µVµ

The transformations

√
gẼd =

√
ḡ
(

˜̄Ed + d∆̄dσ
) √

gWi =
√
ḡW̄i

√
g∇µJ µ =

δ

δσ

∫
d4x
√
gLlocal(g , ∂g , · · · )
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d-dimensional anomaly

We can integrate each term separately

Γ = Γc [g ] +

∫
ddx
√
gLlocal +

∫
ddx
√
g
(
biWi + a1Ẽd

) 1

∆d
Ẽd

Main points

I Existence of Ẽd

I Existence of ∆d

I Ambiguities in Llocal
I Enumeration of Wi
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Conformal geometry
and the Fefferman-Graham ambient space
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Lightcone embedding in flat space

Move from Rd to Rd+2 on the lightcone

Y A = (Y µ,Y +,Y−) ηABY
AY B = 0 Y A ∼ λY A

Spacetime embedding in the lightcone

xµ → Y A = (Y µ,Y +,Y−) = Y +(xµ, 1,−x2)

Y A → xµ =
Y µ

Y +

Embedding Lorentz generates conformal on spacetime

(Y ′+)2ηµνdx
′µdx ′ν = (Y +)2ηµνdx

µdxν
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Fefferman-Graham ambient space

Use Cartesian coordinates, X 2 = 2t2ρ, t = X+

Y A → XA = (Xµ,X d+1,X d+2)
∗
= t
(
xµ,

1 + 2ρ− x2

2
,

1− 2ρ+ x2

2

)

The flat embedding metric

η̃ = ηABdx
AdxB

∗
= 2ρdt2 + 2tdtdρ+ t2ηµνdx

µdxν

In curved space: FG metric with RAB = 0, Lt∂t g̃ = 2g̃ and hµν(x , ρ = 0) = gµν

g̃ = g̃ABdx
AdxB

∗
= 2ρdt2 + 2tdtdρ+ t2hµν(x , ρ)dxµdxν
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Ambient Space in a nutshell

Ad+

1
~

ein
--------- t~

1 >

x
------

X
4+2

Inv
> L

RABD ->E
Was"s

Tr Capa

Pa
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PBH diffeomorphisms

A diffeomorphism of the ambient

δζ g̃AB = Lζ g̃AB = ζC∂C g̃AB + g̃AC∂Bζ
C + g̃BC∂Aζ

C

If it preserves the form of the ambient metric

ζt = tσ(x) ζρ = −2ρσ(x) ζµ = ξµ(x) + · · ·

It generates Diff × Weyl on spacetime

δζhµν |ρ=0 = δζgµν = δσ,ξgµν = 2σgµν +∇µξν +∇µξν
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Ricci-flatness determines hµν

Expand in ρ

hµν(x , ρ) = gµν(x) + ρh(1)
µν +

1

2
ρ2h(2)

µν + · · ·

The coefficients find obstructions in even d

h(1)
µν = 2Pµν =

2

d − 2

(
Rµν −

R

2(d − 1)
gµν
)

h(2)
µν = − 2

d − 4
Bµν + 2PµσP

σ
ν

h(3)
µν =

2

(d − 6)(d − 4)
∇2Bµν + · · ·
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Ambient Laplacian

Scalar Laplacian of the embedding

−2g̃Φ = − 1

t2
2hΦ− 2

t
∂t∂ρΦ− 1

2t
∂tΦ−

d − 2

t2
∂ρΦ +

ρ

t2
h′µ

µ∂ρΦ

Consider an embedding scalar field

Φ = t∆ϕϕ(x)

The projection of the Laplacian gives Yamabe

−2g̃ (t∆ϕϕ(x))|ρ=0 = t∆ϕ−2
(
−2g −

R

2(d − 1)

)
ϕ

We can construct a family of powers of conformal GJMS Laplacians

P2nϕ(x) ≡ t−
2n+d

2 (−2g̃ )n(t
2n−d

2 ϕ)|ρ=0
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Conformal Laplacians

There are derivative and constant parts

P2nϕ(x) = ∆2n +
d − 2n

2
Q2n

Constant part transforms nicely: Q-curvatures in d = 2n

√
gQd =

√
ḡ(Q̄d + ∆̄dσ)

In fact we just found in d = 2n

Ẽd = dQd + conformal invariants
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A physicist proof of Cardy’s conjecture

The anomaly is best parametrized

〈Tµ
µ〉 =

∑
i

biWi + aQd +∇µJ µ

So that the integration is always possible

Γ = Γc [g ] +

∫
ddx
√
gLlocal +

∫
d4x
√
g (biWi + a1Qd)

1

∆d
Qd

I Ambient curvatures enumerate conformal invariants

I Scaling analysis dictates local anomaly (J µ is like a “virial” current)

I Ambiguities in defining ∆d come from embedding Riemann in d ≥ 6
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